Skip to main content

Zero Entropy Systems

Abstract

This paper introduces the notion of entropy dimension to measure the complexity of zero entropy dynamical systems, including the probabilistic and the topological versions. These notions are isomorphism invariants for measure-preserving transformation and continuity. We discuss basic propositions for entropy dimension and construct some examples to show that the topological entropy dimension attains any value between 0 and 1. This paper also gives a symbolic subspace to achieve zero topological entropy, but with full entropy dimension.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ban, A.I.: Entropy of fuzzy T-dynamical systems. J. Fuzzy Math. 6, 351–362 (1998)

    MATH  MathSciNet  Google Scholar 

  2. 2.

    Blume, F.: Possible rates of entropy convergence. Ergod. Theory Dyn. Syst. 17(1), 45–70 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Brucks, K.M., Bruin, H.: Topics from One-dimensional Dynamics. London Mathematical Society Student Texts, vol. 62. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  5. 5.

    Carvalho, M.D.: Entropy dimension of dynamical systems. Port. Math. 54(1), 19–40 (1997)

    MATH  Google Scholar 

  6. 6.

    Cassaigne, J.: Constructing infinite words of intermediate complexity. In: Developments in Language Theory. Lecture Notes in Comput. Sci., vol. 2450, pp. 173–184. Springer, Berlin (2003)

    Chapter  Google Scholar 

  7. 7.

    Dou, D., Huang, W., Park, K.K.: Entropy dimension of measure-preserving systems. Preprint

  8. 8.

    Dou, D., Huang, W., Park, K.K.: Entropy dimension of topological dynamics. Trans. Am. Math. Soc. (to appear)

  9. 9.

    Downarowicz, T., Serafin, J.: Fiber entropy and conditional variational principles in compact non-metrizable spaces. Fund. Math. 172, 217–247 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    Ferenczi, S.: Measure-theoretic complexity of ergodic systems. Isr. J. Math. 100, 189–207 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Ferenczi, S., Park, K.K.: Entropy dimensions and a class of constructive examples. Discrete Contin. Dyn. Syst. 17(1), 133–141 (2007)

    MATH  MathSciNet  Google Scholar 

  12. 12.

    Glasner, E., Ye, X.: Local entropy theory. Ergod. Theory Dyn. Syst. 29, 321–356 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Huang, W., Yi, Y.: A local variational principle of pressure and its applications to equilibrium states. Isr. J. Math. 161(1), 29–74 (2007)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Huang, W., Ye, X., Zhang, G.: A local variational principle for conditional entropy. Ergod. Theory Dyn. Syst. 26, 219–245 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Huang, W., Park, K.K., Ye, X.: Topological disjointness from entropy zero systems. Bull. Soc. Math. Fr. 135(2), 259–282 (2007)

    MATH  MathSciNet  Google Scholar 

  16. 16.

    Katok, A., Hasselblatt, B.: An Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  17. 17.

    Katok, A., Thouvenot, J.-P.: Slow entropy type invariants and smooth realization of commuting measure-preserving transformations. Ann. Inst. H. Poincaré Probab. Stat. 33(3), 323–338 (1997)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  18. 18.

    Misiurewicz, M.: Structure of mappings of an interval with zero entropy. Inst. Hautes Étud. Sci. Publ. Math. 53, 5–16 (1981)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Misiurewicz, M., Smítal, J.: Smooth chaotic maps with zero topological entropy. Ergod. Theory Dyn. Syst. 8(3), 421–424 (1998)

    Google Scholar 

  20. 20.

    Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Stud. Math. 67(1), 45–63 (1980)

    MATH  MathSciNet  Google Scholar 

  21. 21.

    Molaei, M.R., Anvari, M.H., Haqiri, T.: On relative semi-dynamical systems. Intell. Autom. Soft Comput. 13(4), 413–421 (2007)

    Google Scholar 

  22. 22.

    Park, K.K.: On directional entropy functions. Isr. J. Math. 113(2), 243–267 (1999)

    MATH  Article  Google Scholar 

  23. 23.

    Petersen, K.: Ergodic Theory. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  24. 24.

    Pollicott, M., Yuri, M.: Dynamical Systems and Ergodic Theory. London Mathematical Society Student Texts, vol. 40. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  25. 25.

    Rohlin, V.A.: On the Fundamental Ideals of Measure Theory. American Mathematical Society, Providence (1952). Translation Number 71

    Google Scholar 

  26. 26.

    Romagnoli, P.P.: A local variational principle for the topological entropy. Ergod. Theory Dyn. Syst. 23, 1601–1610 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  27. 27.

    Rothschild, J.: Computation of topological entropy. Ph.D. Dissertation, City Univ. New York (1971)

  28. 28.

    Walters, P.: An Introduction to Ergodic Theory. Springer Lecture Notes, vol. 458. Springer, Berlin (1982)

    MATH  Google Scholar 

  29. 29.

    Wang, T.C., Liang, J.-L., Chu, H.-L.: Entropy differences based on Shannon function on triangular fuzzy numbers. WSEAS Trans. Math. 6(1), 30–37 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, WC., Li, B. Zero Entropy Systems. J Stat Phys 140, 1006–1021 (2010). https://doi.org/10.1007/s10955-010-0019-4

Download citation

Keywords

  • Entropy dimension
  • Conditional entropy
  • Dynamical systems
  • Power rule
  • Affinity
  • Symbolic dynamics