Switching Phenomena in a System with No Switches


It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends (“bubble formation”) and decreasing trends (“financial collapse”). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

This is a preview of subscription content, log in to check access.


  1. 1.

    Anderson, P.W.: Science 177, 393 (1972)

    Article  ADS  Google Scholar 

  2. 2.

    Stanley, H.E.: Rev. Mod. Phys. 71, S358 (1999)

    Article  Google Scholar 

  3. 3.

    Mantegna, R.N., Stanley, H.E.: Introduction to Econophysics Correlations and Complexity in Finance. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  4. 4.

    Axtell, R.L.: Science 293, 1818 (2001)

    Article  ADS  Google Scholar 

  5. 5.

    Takayasu, H. (ed.): Practical Fruits of Econophysics. Springer, Berlin (2006)

    Google Scholar 

  6. 6.

    Kiyono, K., Struzik, Z.R., Yamamoto, Y.: Phys. Rev. Lett. 96, 068701 (2006)

    Article  ADS  Google Scholar 

  7. 7.

    Watanabe, K., Takayasu, H., Takayasu, M.: Physica A 383, 120 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. 8.

    Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley, H.E.: Nature 423, 267 (2003)

    Article  ADS  Google Scholar 

  9. 9.

    Preis, T., Paul, W., Schneider, J.J.: Europhys. Lett. 82, 68005 (2008)

    Article  ADS  Google Scholar 

  10. 10.

    Preis, T., Virnau, P., Paul, W., Schneider, J.J.: New J. Phys. 11, 093024 (2009)

    Article  Google Scholar 

  11. 11.

    Lillo, F., Farmer, J.D., Mantegna, R.N.: Nature 421, 129 (2003)

    Article  ADS  Google Scholar 

  12. 12.

    Plerou, V., Gopikrishnan, P., Gabaix, X., Stanley, H.E.: Phys. Rev. E 66, 027104 (2002)

    Article  ADS  Google Scholar 

  13. 13.

    Cont, R., Bouchaud, J.P.: Macroecon. Dyn. 4, 170 (2000)

    MATH  Article  Google Scholar 

  14. 14.

    Krawiecki, A., Holyst, J.A., Helbing, D.: Phys. Rev. Lett. 89, 158701 (2002)

    Article  ADS  Google Scholar 

  15. 15.

    O’Hara, M.: Market Microstructure Theory. Blackwell, Cambridge (1995)

    Google Scholar 

  16. 16.

    Vandewalle, N., Ausloos, M.: Physica A 246, 454 (1997)

    Article  ADS  Google Scholar 

  17. 17.

    Eisler, Z., Kertész, J.: Phys. Rev. E 73, 046109 (2006)

    Article  ADS  Google Scholar 

  18. 18.

    Mandelbrot, B.: J. Bus. 36, 394 (1963)

    Article  Google Scholar 

  19. 19.

    Fama, E.F.: J. Bus. 36, 420 (1963)

    Article  Google Scholar 

  20. 20.

    Lux, T.: Appl. Financ. Econ. 6, 463 (1996)

    Article  Google Scholar 

  21. 21.

    Guillaume, D.M., Dacorogna, M.M., Davé, R.R., Müller, U.A., Olsen, R.B., Pictet, O.V.: Financ. Stoch. 1, 95 (1997)

    MATH  Article  Google Scholar 

  22. 22.

    Gopikrishnan, P., Meyer, M., Amaral, L., Stanley, H.E.: Eur. J. Phys. B 3, 139 (1998)

    Article  ADS  Google Scholar 

  23. 23.

    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Phys. Rev. Lett. 83, 1471 (1999)

    Article  ADS  Google Scholar 

  24. 24.

    Gopikrishnan, P., Plerou, V., Amaral, L.A.N., Meyer, M., Stanley, H.E.: Phys. Rev. E 60, 5305 (1999)

    Article  ADS  Google Scholar 

  25. 25.

    Gopikrishnan, P., Plerou, V., Gabaix, X., Stanley, H.E.: Phys. Rev. E 62, 4493 (2000)

    Article  ADS  Google Scholar 

  26. 26.

    Krugman, P.: The Self-Organizing Economy. Blackwell, Cambridge (1996)

    Google Scholar 

  27. 27.

    Shleifer, A.: Inefficient Markets: An Introduction to Behavioral Finance. Oxford Univ. Press, Oxford (2000)

    Google Scholar 

  28. 28.

    Helbing, D., Farkas, I., Vicsek, T.: Nature 407, 487 (2000)

    Article  ADS  Google Scholar 

  29. 29.

    Bunde, A., Schellnhuber, H.J., Kropp, J. (eds.): The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes. Springer, Berlin (2002)

    Google Scholar 

  30. 30.

    Jones, C.M., Kaul, G., Lipson, M.L.: Rev. Financ. Stud. 7, 631 (1994)

    Article  Google Scholar 

  31. 31.

    Chan, L., Fong, W.M.: J. Financ. Econ. 57, 247 (2000)

    Article  Google Scholar 

  32. 32.

    Politi, M., Scalas, E.: Physica A 387, 2025 (2008)

    Article  ADS  Google Scholar 

  33. 33.

    Jiang, Z.Q., Chen, W., Zhou, W.X.: Physica A 388, 433 (2009)

    Article  ADS  Google Scholar 

  34. 34.

    Dubil, R.: An Arbitrage Guide to Financial Markets. Wiley, Chichester (2004)

    Google Scholar 

  35. 35.

    Deutsch, H.P.: Derivate und Interne Modelle: Modernes Risk Management. Schaefer-Poeschel, Stuttgart (2001)

    Google Scholar 

  36. 36.

    Binder, K.: Rep. Prog. Phys. 50, 783 (1987)

    Article  ADS  Google Scholar 

  37. 37.

    Peng, C.K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E., Goldberger, A.L.: Phys. Rev. Lett. 70, 1343 (1993)

    Article  ADS  Google Scholar 

  38. 38.

    Helbing, D., Huberman, B.A.: Nature 396, 738 (1998)

    Article  ADS  Google Scholar 

  39. 39.

    Ivanov, P.C., Yuen, A., Podobnik, B., Lee, Y.: Phys. Rev. E 69, 056107 (2004)

    Article  ADS  Google Scholar 

  40. 40.

    Helbing, D.: Phys. Rev. E 55, R25 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  41. 41.

    Preis, T., Schneider, J.J., Stanley, H.E.: Formation and bursting of financial bubbles. Preprint (2009)

  42. 42.

    Smith, E., Farmer, J.D., Gillemot, L., Krishnamurthy, S.: Quant. Finance 3, 481 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  43. 43.

    Lux, T., Marchesi, M.: Nature 397, 498 (1999)

    Article  ADS  Google Scholar 

  44. 44.

    Preis, T., Golke, S., Paul, W., Schneider, J.J.: Europhys. Lett. 75, 510 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  45. 45.

    Preis, T., Golke, S., Paul, W., Schneider, J.J.: Phys. Rev. E 76, 016108 (2007)

    Article  ADS  Google Scholar 

  46. 46.

    Bouchaud, J.P., Matacz, A., Potters, M.: Phys. Rev. Lett. 87, 228701 (2001)

    Article  ADS  Google Scholar 

  47. 47.

    Haerdle, W., Kleinow, T., Korostelev, A., Logeay, C., Platen, E.: Quant. Financ. 8, 81 (2008)

    MATH  Article  Google Scholar 

  48. 48.

    Halla, A.D., Hautsch, N.: J. Financ. Mark. 10, 249 (2007)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. Eugene Stanley.

Additional information

Supplementary information can be found on http://www.tobiaspreis.de.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Preis, T., Stanley, H.E. Switching Phenomena in a System with No Switches. J Stat Phys 138, 431–446 (2010). https://doi.org/10.1007/s10955-009-9914-y

Download citation

  • Econophysics