Reichenbach, H.: The Direction of Time. University of California Press, Berkley (1956). Dover, New York (1999)
Google Scholar
Penrose, O., Percival, I.: The direction of time. Proc. Phys. Soc. 79, 605–616 (1962)
MATH
Article
MathSciNet
Google Scholar
Balian, R.: From Microphysics to Macrophysics. Springer, Berlin (1992)
MATH
Google Scholar
Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Ox Bow Press, Woodbridge (1902)
MATH
Google Scholar
Jaynes, E.T.: Gibbs vs. Boltzmann entropies. Am. J. Phys. 33, 391 (1965)
MATH
Article
ADS
Google Scholar
Lebowitz, J.: Macroscopic dynamics, time’s arrow and Boltzmann entropy. Physica A 194, 1–27 (1993)
Article
MathSciNet
ADS
Google Scholar
Wallace, C.: Statistical and Inductive Inference by Minimum Message Length. Springer, Berlin (2005)
MATH
Google Scholar
Peters, J., Janzing, D., Gretton, A., Schölkopf, B.: Detecting the direction of causal time series. In: Proceedings of the International Conference on Machine Learning, Montreal. ACM International Conference Proceeding Series, vol. 382, pp. 801–808. ACM, New York (2009). http://www.cs.mcgill.ca/~icml2009/papers/503.pdf and http://portal.acm.org/citation.cfm?doid=1553374.1553477
Google Scholar
Peters, J., Janzing, D., Gretton, A., Schölkopf, B.: Kernel methods for detecting the direction of time series. In: Proceedings of the 32nd Annual Conference of the German Classification Society (GfCKI 2008), pp. 1–10. Springer, Berlin (2009)
Google Scholar
Maes, C., Redig, F., Van Moffaert, A.: On the definition of entropy production via examples. J. Math. Phys. 41, 1528–1554 (2000)
MATH
Article
MathSciNet
ADS
Google Scholar
Gallavotti, G., Cohen, E.: Dynamical ensembles and nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)
Article
ADS
Google Scholar
Horowitz, E., Sahni, S.: Fundamentals of Data Structures. Computer Science Press, New York (1976)
MATH
Google Scholar
Maes, C., Netocný, K.: Time reversal and entropy. J. Stat. Phys. 110(1–2), 269–309 (2003)
MATH
Article
Google Scholar
Chazottes, J.-R., Redig, F.: Testing the irreversibility of a Gibbsian process via hitting and return times. Nonlinearity 18(18), 2477–2489 (2005)
MATH
Article
MathSciNet
ADS
Google Scholar
Darmois, G.: Analyse générale des liaisons stochastiques. Rev. Inst. Int. Stat. 21, 2–8 (1953)
Article
MathSciNet
Google Scholar
Skitovic, V.: Linear combinations of independent random variables and the normal distribution law. Sel. Transl. Math. Stat. Probab. 2, 211–228 (1962)
MATH
MathSciNet
Google Scholar
Kano, Y., Shimizu, S.: Causal inference using nonnormality. In: Proceedings of the International Symposium on Science of Modeling, the 30th Anniversary of the Information Criterion, Tokyo, Japan, pp. 261–270 (2003)
Shimizu, S., Hyvärinen, A., Kano, Y., Hoyer, P.O.: Discovery of non-Gaussian linear causal models using ICA. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, Edinburgh, UK, pp. 526–533 (2005)
Brockwell, P., Davis, R.: Time Series: Theory and Methods. Springer, Berlin (1991)
Book
Google Scholar
Cover, T., Thomas, J.: Elements of Information Theory. Wileys Series in Telecommunications. Wiley, New York (1991)
Google Scholar
Tolman, R.: The Principles of Statistical Mechanics. Oxford University Press, Oxford (1938)
Google Scholar
Lemeire, J., Dirkx, E.: Causal models as minimal descriptions of multivariate systems. http://parallel.vub.ac.be/~jan/ (2006)
Janzing, D., Schölkopf, B.: Causal inference using the algorithmic Markov condition. http://arxiv.org/abs/0804.3678 (2008)
Zurek, W.: Algorithmic randomness and physical entropy. Phys Rev A 40(8), 4731–4751 (1989)
Article
MathSciNet
ADS
Google Scholar
Hoyer, P., Janzing, D., Mooij, J., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Proceedings of the Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2008. MIT Press, Cambridge (2009). http://books.nips.cc/papers/files/nips21/NIPS2008_0266.pdf
Google Scholar
Mooij, J., Janzing, D., Peters, J., Schölkopf, B.: Regression by dependence minimization and its application to causal inference. In: Proceedings of the International Conference on Machine Learning, Montreal. ACM International Conference Proceeding Series, vol. 382, pp. 745–752. ACM, New York (2009) http://www.cs.mcgill.ca/~icml2009/papers/279.pdf and http://portal.acm.org/citation.cfm?id=1553374.1553470
Google Scholar
Zhang, K., Hyvärinen, A.: On the identifiability of the post-nonlinear causal model. In: 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada (2009)
Janzing, D.: On causally asymmetric versions of Occam’s Razor and their relation to thermodynamics. http://arxiv.org/abs/0708.3411v2 (2008)
Allahverdyan, A., Janzing, D.: Relating the thermodynamic arrow of time to the causal arrow. J. Stat. Mech. P04001 (2008)