Skip to main content
Log in

Deterministic Approach to the Kinetic Theory of Gases

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the so-called Bernoulli model of the kinetic theory of gases, where (1) the particles are dimensionless points, (2) they are contained in a cube container, (3) no attractive or exterior forces are acting on them, (4) there is no collision between the particles, (5) the collision against the walls of the container are according to the law of elastic reflection, we deduce from Newtonian mechanics two local probabilistic laws: a Poisson limit law and a central limit theorem. We also prove some global law of large numbers, justifying that “density” and “pressure” are constant. Finally, as a byproduct of our research, we prove the surprising super-uniformity of the typical billiard path in a square.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, J.: Probabilistic diophantine approximation, I. Kronecker sequences. Ann. Math. 140, 451–502 (1994)

    MATH  Google Scholar 

  2. Chernov, N., Makarian, R.: Chaotic Billiards. Mathematical Surveys and Monographs, vol. 127. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  3. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic Theory. Springer, New York (1981)

    Google Scholar 

  4. Egerváry, E., Turán, P.: On a certain point of the kinetic theory of gases. Stud. Math. 12, 170–180 (1951)

    MATH  Google Scholar 

  5. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon, Oxford (1979)

    MATH  Google Scholar 

  6. Hlawka, E.: Mathematische Modelle der kinetischen Gastheorie. In: Gruber, P.M., Schmidt, W.M. (eds.) Edmund Hlawka Selecta, pp. 361–375. Springer, Berlin (2000) (the original paper was published in 1974)

    Google Scholar 

  7. Kac, M.: Statistical Independence in Probability, Analysis and Number Theory. The Carus Mathematical Monographs, vol. 12. The Mathematical Association of America, Washington (1959)

    MATH  Google Scholar 

  8. Khinchine, A.: Eins Satz über Kettenbrüche, mit arithmetischen Anwendungen. Math. Z. 18, 289–306 (1923)

    Article  MathSciNet  Google Scholar 

  9. Khinchine, A.: Continued Fractions. Groningen, Noordhoff (1963), English translation

    Google Scholar 

  10. Prosser, R.T.: Spectral analysis of classical central force motion. J. Math. Phys. 10(12), 2233–2239 (1969)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Simányi, N.: Proof of the Boltzmann–Sinai ergodic hypothesis for typical hard disk systems. Invent. Math. 154, 123–178 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Simányi, N.: Proof of the ergodic hypothesis for typical hard ball systems. Ann. Inst. Henri Poincare 5, 203–233 (2004)

    Article  MATH  Google Scholar 

  13. Sinai, Ya.G.: Introduction to Ergodic Theory. Mathematical Notes. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  14. Sinai, Ya.G., Volkovsky, K.L.: Ergodic properties of an ideal gas with infinitely many degrees of freedom. Funct. Anal. Appl. 5(4), 19–21 (1971)

    Google Scholar 

  15. Steinhaus, H.: Sur les fonctions indépendantes (VII). Stud. Math. 10, 1–20 (1948)

    MATH  MathSciNet  Google Scholar 

  16. Steinhaus, H.: Sur les fonctions indépendantes (X) (Equipartition de molécules dans un récipient cubique). Stud. Math. 13, 1–17 (1953)

    MATH  MathSciNet  Google Scholar 

  17. Thompson, C.J.: Mathematical Statistical Mechanics. The Macmillan Company, London (1972)

    MATH  Google Scholar 

  18. Tolman, R.C.: The Principles of Statistical Mechanics. Oxford University Press, London (1938) (reprinted several times since)

    Google Scholar 

  19. Uhlenbeck, G.E., Ford, G.W.: Lectures in Statistical Mechanics. American Mathematical Society, Providence (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, J. Deterministic Approach to the Kinetic Theory of Gases. J Stat Phys 138, 160–269 (2010). https://doi.org/10.1007/s10955-009-9871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9871-5

Navigation