Correlation Functions for β=1 Ensembles of Matrices of Odd Size

Abstract

Using the method of Tracy and Widom we rederive the correlation functions for β=1 Hermitian and real asymmetric ensembles of N×N matrices with N odd.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adler, M., Forrester, P.J., Nagao, T., van Moerbeke, P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99(1–2), 141–170 (2000)

    MATH  Article  Google Scholar 

  2. 2.

    Andréief, C.: Note sur une relation pour les intégrales défines des produits des fonctions. Mém. Soc. Sci. Bordeaux 2, 1–14 (1883)

    Google Scholar 

  3. 3.

    Borodin, A., Sinclair, C.D.: Correlation functions of ensembles of asymmetric real matrices (2007). Accepted for publication in Commun. Math. Phys.

  4. 4.

    Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limits (2008)

  5. 5.

    de Bruijn, N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. (NS) 19, 133–151 (1956) 1955

    Google Scholar 

  6. 6.

    Dyson, F.J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19, 235–250 (1970)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  7. 7.

    Edelman, A.: The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60(2), 203–232 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Forrester, P.: Log-gases and random matrices. Book in progress

  9. 9.

    Forrester, P., Mays, A.: A method to calculate correlation functions for β=1 random matrices of odd size. J. Stat. Phys. 134(3), 443–462 (2009)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  10. 10.

    Forrester, P.J., Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99 (2007)

  11. 11.

    Forrester, P.J., Nagao, T.: Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble. J. Phys. A 41(37), 375003 (2008)

    Article  MathSciNet  Google Scholar 

  12. 12.

    Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  13. 13.

    Lehmann, N., Sommers, H.-J.: Eigenvalue statistics of random real matrices. Phys. Rev. Lett. 67, 941–944 (1991)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  14. 14.

    Mahoux, G., Mehta, M.L.: A method of integration over matrix variables. IV. J. Phys. I 1(8), 1093–1108 (1991)

    Article  MathSciNet  Google Scholar 

  15. 15.

    Mehta, M.L.: A note on correlations between eigenvalues of a random matrix. Commun. Math. Phys. 20, 245–250 (1971)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  16. 16.

    Mehta, M.L.: Random Matrices. Pure and Applied Mathematics (Amsterdam), vol. 142, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    Google Scholar 

  17. 17.

    Rains, E.M.: Correlation functions for symmetrized increasing subsequences (2000)

  18. 18.

    Sinclair, C.D.: Averages over Ginibre’s ensemble of random real matrices. Int. Math. Res. Not. 2007, 1–15 (2007)

    Google Scholar 

  19. 19.

    Sinclair, C.D.: The range of multiplicative functions on ℂ[x],ℝ[x] and ℤ[x]. Proc. Lond. Math. Soc. 96(3), 697–737 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  20. 20.

    Sommers, H.-J.: Symplectic structure of the real Ginibre ensemble. J. Phys. A 40(29), F671–F676 (2007)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  21. 21.

    Sommers, H.-J., Wieczorek, W.: General eigenvalue correlations for the real Ginibre ensemble. J. Phys. A 41(40), (2008)

  22. 22.

    Stembridge, J.R.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83(1), 96–131 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  23. 23.

    Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5–6), 809–835 (1998)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Sinclair.

Additional information

This research was supported in part by the National Science Foundation (DMS-0801243).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinclair, C.D. Correlation Functions for β=1 Ensembles of Matrices of Odd Size. J Stat Phys 136, 17–33 (2009). https://doi.org/10.1007/s10955-009-9771-8

Download citation

Keywords

  • Random matrix theory
  • β=1
  • Correlation functions
  • Asymmetric ensembles
  • Ginibre’s real ensemble