Skip to main content
Log in

Topology and Geometry of Smectic Order on Compact Curved Substrates

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Smectic order on arbitrary curved substrate can be described by a differential form of rank one (1-form), whose geometric meaning is the differential of the local phase field of the density modulation. The exterior derivative of 1-form is the local dislocation density. Elastic deformations are described by superposition of exact differential forms. We use the formalism of differential forms to systematically classify and characterize all low energy smectic states on torus as well as on sphere. A two dimensional smectic order confined on either manifold exhibits many topologically distinct low energy states. Different states are not accessible from each other by local fluctuations. The total number of low energy states scales as the square root of the system area. We also address the energetics of 2D smectic on a curved substrate and calculate the mean field phase diagram of smectic on a thin torus. Finally, we discuss the motion of disclinations for spherical smectics as low energy excitations, and illustrate the interesting connection between spherical smectic and the theory of elliptic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates, M.A.: Nematic ordering and defects on the surface of a sphere: A Monte Carlo simulation study. J. Chem. Phys. 128(10), 104707 (2008)

    Article  ADS  Google Scholar 

  2. Bausch, A.R., Bowick, M.J., Cacciuto, A., Dinsmore, A.D., Hsu, M.F., Nelson, D.R., Nikolaides, M.G., Travesset, A., Weitz, D.A.: Grain boundary scars and spherical crystallography. Science 299(5613), 1716–1718 (2003). doi:10.1126/science.1081160. URL: http://www.sciencemag.org/cgi/content/abstract/299/5613/1716

    Article  ADS  Google Scholar 

  3. Bellini, T., Radzihovsky, L., Toner, J., Clark, N.: Universality and scaling in the disordering of a smectic liquid crystal. Science 294, 1074 (2001)

    Article  ADS  Google Scholar 

  4. Blanc, C., Kleman, M.: The confinement of smectics with a strong anchoring. Eur. Phys. J. E, Soft Matter 4, 241–251 (2001)

    Article  Google Scholar 

  5. Bowick, M., Cacciuto, A., Nelson, D.R., Travesset, A.: Crystalline order on a sphere and the generalized Thomson problem. Phys. Rev. Lett. 89(18), 185502 (2002). doi:10.1103/PhysRevLett.89.185502

    Article  ADS  Google Scholar 

  6. Bowick, M.J., Nelson, D.R., Travesset, A.: Interacting topological defects on frozen topographies. Phys. Rev. B 62(13), 8738–8751 (2000). doi:10.1103/PhysRevB.62.8738

    Article  ADS  Google Scholar 

  7. Chaikin, P., Lubensky, T.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  8. Chantawansri, T.L., Bosse, A.W., Hexemer, A., Ceniceros, H.D., Garcia-Cervera, C.J., Kramer, E.J., Fredrickson, G.H.: Self-consistent field theory simulations of block copolymer assembly on a sphere. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 75(3), 031802 (2007). doi:10.1103/PhysRevE.75.031802

    ADS  Google Scholar 

  9. Clark, N.A., Meyer, R.B.: Strain-induced instability of monodomain smectic a and cholesteric liquid crystals. Appl. Phys. Lett. 22(10), 493–494 (1973). doi:10.1063/1.1654481. URL: http://link.aip.org/link/?APL/22/493/1

    Article  ADS  Google Scholar 

  10. David, F., Guitter, E., Peliti, L.: Critical properties of fluid membranes with hexatic order. J. Phys. 48, 2059–2066 (1987)

    Google Scholar 

  11. de Gennes, P., Prost, J.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1993)

    Google Scholar 

  12. Frank, J.R., Kardar, M.: Defects in nematic membranes can buckle into pseudospheres. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 77(4), 041705 (2008). doi:10.1103/PhysRevE.77.041705. URL: http://link.aps.org/abstract/PRE/v77/e041705

    ADS  Google Scholar 

  13. Frankel, T.: The Geometry of Physics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Garland, C.W., Nounesis, G.: Critical behavior at nematic smectic-a phase transitions. Phys. Rev. E 49(4), 2964–2971 (1994). doi:10.1103/PhysRevE.49.2964

    Article  ADS  Google Scholar 

  15. Golubovic, L., Wang, Z.G.: Anharmonic elasticity of smectics a and the Kardar-Parisi-Zhang model. Phys. Rev. Lett. 69, 2535 (1992)

    Article  ADS  Google Scholar 

  16. Golubović, L., Wang, Z.G.: Kardar-Parisi-Zhang model and anomalous elasticity of two- and three-dimensional smectic-a liquid crystals. Phys. Rev. E 49(4), 2567–2578 (1994). doi:10.1103/PhysRevE.49.2567

    Article  ADS  Google Scholar 

  17. Grinstein, G., Pelcovits, R.A.: Anharmonic effects in bulk smectic liquid crystals and other “one-dimensional solids”. Phys. Rev. Lett. 47(12), 856–859 (1981). doi:10.1103/PhysRevLett.47.856

    Article  ADS  Google Scholar 

  18. Grinstein, G., Pelcovits, R.A.: Nonlinear elastic theory of smectic liquid crystals. Phys. Rev. A 26(2), 915–925 (1982). doi:10.1103/PhysRevA.26.915

    Article  ADS  Google Scholar 

  19. Grosberg, A.Y., Nguyen, T.T., Shklovskii, B.I.: Colloquium: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74(2), 329–345 (2002). doi:10.1103/RevModPhys.74.329

    Article  ADS  Google Scholar 

  20. Halperin, B.I., Lubensky, T.C.: Ma, S. k.: First-order phase transitions in superconductors and smectic-a liquid crystals. Phys. Rev. Lett. 32(6), 292–295 (1974). doi:10.1103/PhysRevLett.32.292

    Article  Google Scholar 

  21. Hamada, N., Sawada, S.i., Oshiyama, A.: New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992). doi:10.1103/PhysRevLett.68.1579

    Article  ADS  Google Scholar 

  22. Helfrich, W., Prost, J.: Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys. Rev. A 38(6), 3065–3068 (1988). doi:10.1103/PhysRevA.38.3065

    Article  ADS  Google Scholar 

  23. Kleman, M., Friedel, J.: Disclinations, dislocations, and continuous defects: A reappraisal. Rev. Mod. Phys. 80(1), 61 (2008). doi:10.1103/RevModPhys.80.61. URL: http://link.aps.org/abstract/RMP/v80/p61

    Article  ADS  MathSciNet  Google Scholar 

  24. Kogut, J.B.: An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51(4), 659–713 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kroner, E.: Continuum theory of defects. In: Bolian, R. (eds.) Physics of Defects, Les Houches, Session XXXV, 1980. North-Holland, Amsterdam (1981)

    Google Scholar 

  26. Li, J.F., Fan, J., Zhang, H.D., Qiu, F., Tang, P., Yang, Y.L.: Self-assembled pattern formation of block copolymers on the surface of the sphere using self-consistent field theory. Eur. Phys. J. E, Soft Matter 20(4), 449–457 (2006)

    Article  ADS  Google Scholar 

  27. Li, M.H., et al.: Polymer vesicles with smectic structure inside the membrane. Unpublished

  28. Lubensky, T., Prost, J.: Orientational order and vesicle shape. J. Phys. II France 2, 371–382 (1992)

    Article  Google Scholar 

  29. MacKintosh, F.C., Lubensky, T.C.: Orientational order, topology, and vesicle shapes. Phys. Rev. Lett. 67(9), 1169–1172 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Mateescu, E.M., Jeppesen, C., Pincus, P.: Overcharging of a spherical macroion by an oppositely charged polyelectrolyte. Europhys. Lett. 46(4), 493–498 (1999)

    Article  Google Scholar 

  31. Matthews, P.C.: Pattern formation on a sphere. Phys. Rev. E 67(3), 036,206 (2003). doi:10.1103/PhysRevE.67.036206

    Article  MathSciNet  Google Scholar 

  32. Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591–648 (1979). doi:10.1103/RevModPhys.51.591

    Article  ADS  MathSciNet  Google Scholar 

  33. Michel, L.: Symmetry defects and broken symmetry. Configurations hidden symmetry. Rev. Mod. Phys. 52(3), 617–651 (1980). doi:10.1103/RevModPhys.52.617

    Article  ADS  Google Scholar 

  34. Nakahara, M.: Geometry, Topology, and Physics. Taylor & Francis, London (2003)

    MATH  Google Scholar 

  35. Nelson, D.: Toward a tetravalent chemistry of colloids. Nano Lett. 2(10), 1125–1129 (2002)

    Article  Google Scholar 

  36. Nelson, D.R.: Defects and Geometry in Condensed Matter Physics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  37. Nelson, D.R., Toner, J.: Bond-orientational order, dislocation loops, and melting of solids and smectic-a liquid crystals. Phys. Rev. B 24(1), 363–387 (1981). doi:10.1103/PhysRevB.24.363

    Article  ADS  MathSciNet  Google Scholar 

  38. Nelson, P., Powers, T.: Renormalization of chiral couplings in titled bilayer membranes. J. Phys. II France 3, 1535–1569 (1993)

    Article  Google Scholar 

  39. Netz, R., Joanny, J.F.: Adsorption of semiflexible polyelectrolytes on charged planar surfaces: Charge compensation, charge reversal, and multilayer formation. Macromolecules 32(26), 9013–9025 (1999)

    Article  Google Scholar 

  40. Netz, R., Joanny, J.F.: Complexation between a semiflexible polyelectrolyte and an oppositely charged sphere. Macromolecules 32(26), 9026–9040 (1999)

    Article  Google Scholar 

  41. Park, S.Y., Bruinsma, R.F., Gelbart, W.M.: Spontaneous overcharging of macro-ion complexes. Europhys. Lett. 46(4), 454–460 (1999)

    Article  Google Scholar 

  42. Radzihovsky, L., Toner, J.: Dirt softens soap: Anomalous elasticity of disordered smectics. Phys. Rev. Lett. 78(23), 4414–4417 (1997). doi:10.1103/PhysRevLett.78.4414

    Article  ADS  Google Scholar 

  43. Radzihovsky, L., Toner, J.: Smectic liquid crystals in random environments. Phys. Rev. B 60(1), 206–257 (1999). doi:10.1103/PhysRevB.60.206

    Article  ADS  Google Scholar 

  44. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992). doi:10.1063/1.107080. URL: http://link.aip.org/link/?APL/60/2204/1

    Article  ADS  Google Scholar 

  45. Santangelo, C.D., Kamien, R.D.: Curvature and topology in smectic-a liquid crystals. Proc. R. Soc. A, Math. Phys. Eng. Sci. 461(2061), 2911–2921 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Santangelo, C.D., Vitelli, V., Kamien, R.D., Nelson, D.R.: Geometric theory of columnar phases on curved substrates. Phys. Rev. Lett. 99(1), 017801 (2007). doi:10.1103/PhysRevLett.99.017801

    Article  ADS  Google Scholar 

  47. Shin, H., Bowick, M.J., Xing, X.: Topological defects in spherical nematics. Phys. Rev. Lett. 101(3), 037802 (2008). doi:10.1103/PhysRevLett.101.037802. URL: http://link.aps.org/abstract/PRL/v101/e037802

    Article  ADS  Google Scholar 

  48. Stone, M.: Mathematics for physics, I and II. Online lecture notes, http://webusers.physics.uiuc.edu/m-stone5/

  49. Tang, P., Qiu, F., Zhang, H., Yang, Y.: Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 72(1), 016710 (2005). doi:10.1103/PhysRevE.72.016710

    Google Scholar 

  50. Thouless, D.J.: Topological Quantum Numbers in Nonrelativistic Physics. World Scientific, Singapore (1998)

    Google Scholar 

  51. Trebin, H.R.: The topology of non-uniform media in condensed matter physics. Adv. Phys. 31(3), 195–254 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  52. Varea, C., Aragón, J.L., Barrio, R.A.: Turing patterns on a sphere. Phys. Rev. E 60(4), 4588–4592 (1999). doi:10.1103/PhysRevE.60.4588

    Article  ADS  Google Scholar 

  53. Vitelli, V., Nelson, D.R.: Nematic textures in spherical shells. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 74(2), 021711 (2006). doi:10.1103/PhysRevE.74.021711. URL: http://link.aps.org/abstract/PRE/v74/e021711

    ADS  MathSciNet  Google Scholar 

  54. Wen, X.G.: Quantum Field Theory of Many-Body Systems. Oxford University Press, Oxford (2004)

    Google Scholar 

  55. Xing, X.: Topology of smectic order on compact substrates. Phys. Rev. Lett. 101(14), 147801 (2008). doi:10.1103/PhysRevLett.101.147801. URL: http://link.aps.org/abstract/PRL/v101/e147801

    Article  ADS  Google Scholar 

  56. Xing, X., Bowick, M., Li, M.H.: Elasticity theory of smectic polymer vesicle. In preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, X. Topology and Geometry of Smectic Order on Compact Curved Substrates. J Stat Phys 134, 487–536 (2009). https://doi.org/10.1007/s10955-009-9681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9681-9

Keywords

Navigation