Amit, D.J.: Modeling Brain Function: The World of Attractor Neural Network. Cambridge University Press, Cambridge (1992)
Google Scholar
Agostini, A., Barra, A., De Sanctis, L.: Positive-overlap transition and critical exponents in mean field spin glasses. J. Stat. Mech. P11015 (2006)
Aizenman, M., Contucci, P.: On the stability of the quenched state in mean field spin glass models. J. Stat. Phys. 92, 765–783 (1998)
MATH
Article
MathSciNet
Google Scholar
Aizenman, M., Sims, R., Starr, S.L.: An extended variational principle for the SK spin-glass model. Phys. Rev. B 68, 214403 (2003)
Article
ADS
Google Scholar
Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)
Article
MathSciNet
ADS
Google Scholar
Barra, A.: Irreducible free energy expansion and overlap locking in mean field spin glasses. J. Stat. Phys. 123, 601–614 (2006)
MATH
Article
MathSciNet
ADS
Google Scholar
Barra, A., De Sanctis, L.: Overlap fluctuation from Boltzmann random overlap structure. J. Math. Phys. 47, 103305 (2006)
Article
MathSciNet
ADS
Google Scholar
Barra, A., De Sanctis, L.: Stability properties and probability distributions of multi-overlaps in diluted spin glasses. J. Stat. Mech. P08025 (2007)
Barra, A., De Sanctis, L.: Spin-glass transition as the lacking of the volume limit commutativity (2007, to appear)
Barra, A., De Sanctis, L., Folli, V.: Critical behavior of random spin systems. J. Phys. A 41(21), 215005 (2008)
Article
ADS
MathSciNet
Google Scholar
Bovier, A., Kurkova, I.: Rigorous results on some simple spin glass models. Markov Proc. Relat. Fields 9, (2003)
Bovier, A., Kurkova, I., Loewe, M.: Fluctuations of the free energy in the REM and the p-spin SK model. Ann. Probab. 30 (2002)
Comets, F., Neveu, J.: The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: the high temperature case. Commun. Math. Phys. 166, 549 (1995)
MATH
Article
MathSciNet
ADS
Google Scholar
Coolen, A.C.C.: The trick which became a theory: a brief history of the replica method. Available at http://www.mth.kcl.ac.uk/~tcoolen/
Contucci, P., Ghirlanda, S.: Modeling society with statistical mechanics: an application to cultural contact and immigration. Qual. Quantit. 41, 569–578 (2007)
Article
Google Scholar
Contucci, P., Giardinà, C.: Spin-glass stochastic stability: a rigorous proof. math-ph/0408002
De Sanctis, L.: General structures for spherical and other mean-field spin models. J. Stat. Phys. 126
De Sanctis, L., Franz, S.: Self averaging identities for random spin systems. math-ph/0705:2978
Ellis, R.S.: Large Deviations and Statistical Mechanics. Springer, New York (1985)
MATH
Google Scholar
Ghirlanda, S., Guerra, F.: General properties of overlap distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A 31, 9149–9155 (1998)
MATH
Article
MathSciNet
ADS
Google Scholar
Fischer, K.H., Hertz, J.A.: Spin Glasses. Cambridge University Press, Cambridge (1991)
Google Scholar
Gallo, I., Contucci, P.: Bipartite mean field spin system: existence and solution. cond-mat/0710.0800
Guerra, F.: Mathematical aspects of mean field spin glass theory. cond-mat/0410435
Guerra, F.: About the cavity fields in mean field spin glass models. cond-mat/0307673
Guerra, F.: Fluctuations and thermodynamic variables in mean field spin glass models. In: Albeverio, S., et al. (eds.) Stochastic Provesses, Physics and Geometry, II. Singapore (1995)
Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233:1, 1–12 (2003)
MATH
Article
MathSciNet
ADS
Google Scholar
Guerra, F.: About the overlap distribution in mean field spin glass models. Int. J. Mod. Phys. B 10, 1675–1684 (1996)
Article
MathSciNet
ADS
Google Scholar
Guerra, F., Albeverio, S. et al.: The cavity method in the mean field spin glass model. Functional representations of thermodynamic variables. In: Albeverio, S., et al. (eds.) Advances in Dynamical Systems and Quantum Physics. Singapore (1995)
Guerra, F.: Sum rules for the free energy in the mean field spin glass model. In: Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects. Fields Institute Communications, vol. 30. American Mathematical Society, Providence (2001)
Google Scholar
Guerra, F.: Private communications
Guerra, F.: An introduction to mean field spin glass theory: methods and results. In: Lecture at Les Houches Winter School (2005)
Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230(1), 71–79 (2002)
MATH
Article
MathSciNet
ADS
Google Scholar
Guerra, F., Toninelli, F.L.: The high temperature region of the Viana-Bray diluted spin glass model. J. Stat. Phys. 115 (2004)
Guerra, F., Toninelli, F.L.: Central limit theorem for fluctuations in the high temperature region of the Sherrington-Kirkpatrick spin glass model. J. Math. Phys. 43, 6224–6237 (2002)
MATH
Article
MathSciNet
ADS
Google Scholar
Guerra, F., Toninelli, F.L.: The infinite volume limit in generalized mean field disordered models. Markov Process. Relat. Fields 9(2), 195–207 (2003)
MATH
MathSciNet
Google Scholar
Kuttner, J.: Some theorems on the Cesaro limit of a function. Lond. Math. Soc. s1-33, 107–118 (1958)
Article
MathSciNet
Google Scholar
Mertens, S., Mezard, M., Zecchina, R.: Threshold values of random K-SAT from the cavity method. Random Struct. Algorithms 28, 340–373 (2006)
MATH
Article
MathSciNet
Google Scholar
Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)
MATH
Google Scholar
Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.A.: Replica symmetry breaking and ultrametricity. J. Phys. 45, 843 (1984)
Google Scholar
Pagnani, A., Parisi, G., Ricci-Tersenghi, F.: Glassy transition in a disordered model for the RNA secondary structure. Phys. Rev. Lett. 84, 2026 (2000)
Article
ADS
Google Scholar
Parisi, G.: Stochastic stability. In: Proceedings of the Conference Disordered and Complex Systems, London (2000)
Parisi, G.: Statistical Field Theory. Addison-Wesley, New York (1988)
MATH
Google Scholar
Talagrand, M.: Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models. Springer, Berlin (2003)
Google Scholar
Talagrand, M.: The Parisi formula. Ann. Math. 163(1), 221–263 (2006)
MATH
MathSciNet
Article
Google Scholar
Viana, L., Bray, A.J.: Phase diagrams for dilute spin-glasses. J. Phys. C 18, 3037 (1985)
Article
ADS
Google Scholar