Skip to main content
Log in

Generalized Arcsine Law and Stable Law in an Infinite Measure Dynamical System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Limit theorems for the time average of some observation functions in an infinite measure dynamical system are studied. It is known that intermittent phenomena, such as the Rayleigh-Benard convection and Belousov-Zhabotinsky reaction, are described by infinite measure dynamical systems. We show that the time average of the observation function which is not the L 1(m) function, whose average with respect to the invariant measure m is finite, converges to the generalized arcsine distribution. This result leads to the novel view that the correlation function is intrinsically random and does not decay. Moreover, it is also numerically shown that the time average of the observation function converges to the stable distribution when the observation function has the infinite mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manneville, P.: Intermittency, self similarity and 1/f spectrum. J. Phys. 41, 1235–1243 (1980)

    MathSciNet  Google Scholar 

  2. Ahlers, G., Behringer, R.P.: The Rayleigh-Bénard instability and the evolution of turbulence. Prog. Theor. Phys. Suppl. 64, 186–201 (1978)

    Article  ADS  Google Scholar 

  3. Pomeau, Y., et al.: Intermittent behavior in the Belousov-Zhabotinsky reaction. J. Phys. Lett. 42, 271–273 (1981)

    Article  Google Scholar 

  4. Nirmal, M., et al.: Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996)

    Article  ADS  Google Scholar 

  5. Omori, F.: On the aftershocks of earthquakes. J. Coll. Sci., Imp. Univ. Tokyo 7, 111–200 (1894)

    Google Scholar 

  6. Bottiglieri, M., Godano, C.: On-off intermittency in earthquake occurrence. Phys. Rev. E 75, 026101 (2007)

    ADS  Google Scholar 

  7. Aizawa, Y., Kikuchi, Y., Harayama, T., Yamamoto, K., Ota, M., Tanaka, K.: Stagnant motions in Hamiltonian Systems. Prog. Theor. Phys. Suppl. 98, 36–82 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Aizawa, Y.: On the f −1 spectral chaos. Prog. Theor. Phys. 72, 659–661 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Brokmann, X., et al.: Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 12061 (2003)

    Article  Google Scholar 

  10. Margolin, G., Barkai, E.: Nonergodicity of a time series obeying Lévy statistics. J. Stat. Phys. 122, 137–167 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Darling, D.A., Kac, M.: On occupation times for Markov processes. Trans. Am. Math. Soc. 84, 444–458 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  12. Aaronson, J.: An Introduction to Infinite Ergodic Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  13. Thaler, M.: The Dynkin-Lamperti arc-sine laws for measure preserving transformations. Trans. Am. Math. Soc. 350, 4593–4607 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Thaler, M., Zweimüller, R.: Distributional limit theorems in infinite ergodic theory. Probab. Theory Relat. Fields 135, 15–52 (2006)

    Article  MATH  Google Scholar 

  15. Thaler, M.: A limit theorem for sojourns near indifferent fixed points of one dimensional maps. Ergod. Theory Dyn. Syst. 22, 1289–1312 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bel, G., Barkai, E.: Weak ergodicity breaking with deterministic dynamics. Europhys. Lett. 74, 15–21 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Aizawa, Y.: Comments on the non-stationary chaos. Chaos, Soliton Fractals 11, 263–268 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thaler, M.: Transformations on [0,1] with infinite invariant measures. Isr. J. Math. 46, 67–96 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cox, D.R.: Renewal Theory. Methuen, New York (1962)

    MATH  Google Scholar 

  20. Aizawa, Y., Kohyama, T.: In: Kuramoto, Y. (ed.) Kyoto Summer Institute “Chaos and Statistical Mechanics”, pp. 109–116. Springer, Berlin (1983)

    Google Scholar 

  21. Inoue, T.: Ratio ergodic theorems for maps with indifferent fixed points. Ergod. Theory Dyn. Syst. 17, 625–642 (1997)

    Article  MATH  Google Scholar 

  22. Akimoto, T., Aizawa, Y.: Scaling exponents of the slow relaxation in non-hyperbolic chaotic dynamics. Nonlinear Phenom. Complex Syst. 6, 178–182 (2006)

    Google Scholar 

  23. Akimoto, T., Aizawa, Y.: New aspects of the correlation functions in non-hyperbolic chaotic systems. J. Korean Phys. Soc. 50, 254–260 (2007)

    Article  Google Scholar 

  24. Aizawa, Y.: Non-stationary chaos revisited from large deviation theory. Prog. Theor. Phys. Suppl. 99, 149–164 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lamperti, J.: An occupation time theorem for a class of stochastic processes. Trans. Am. Math. Soc. 88, 380–387 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tasaki, S., Gaspard, P.: Spectral properties of a piecewise linear intermittent map. J. Stat. Phys. 109, 803–820 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Barkai, E.: Residence time statistics for normal and fractional diffusion in a force field. J. Stat. Phys. 123, 883–907 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Burnov, S., Barkai, E.: Occupation time statistics in the quenched trap model. Phys. Rev. Lett. 98, 250601 (2007)

    Article  ADS  Google Scholar 

  29. Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17, 656–660 (1931)

    Article  MATH  ADS  Google Scholar 

  30. Feller, W.: In: An Introduction to Probability Theory and Its Applications, 2nd edn., vol. II, p. 448. Wiley, New York (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Akimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimoto, T. Generalized Arcsine Law and Stable Law in an Infinite Measure Dynamical System. J Stat Phys 132, 171–186 (2008). https://doi.org/10.1007/s10955-008-9544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9544-9

Keywords

Navigation