Skip to main content

Heat Transport in Ordered Harmonic Lattices


We consider heat conduction across an ordered oscillator chain with harmonic interparticle interactions and also onsite harmonic potentials. The onsite spring constant is the same for all sites excepting the boundary sites. The chain is connected to Ohmic heat reservoirs at different temperatures. We use an approach following from a direct solution of the Langevin equations of motion. This works both in the classical and quantum regimes. In the classical case we obtain an exact formula for the heat current in the limit of system size N→∞. In special cases this reduces to earlier results obtained by Rieder, Lebowitz and Lieb and by Nakazawa. We also obtain results for the quantum mechanical case where we study the temperature dependence of the heat current. We briefly discuss results in higher dimensions.

This is a preview of subscription content, access via your institution.


  1. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 1073 (1967)

    Article  ADS  Google Scholar 

  2. Nakazawa, H.: Energy flow in harmonic linear chain. Prog. Theor. Phys. 39, 236 (1968)

    Article  ADS  Google Scholar 

  3. Nakazawa, H.: On the lattice thermal conduction. Prog. Theor. Phys. Suppl. 45, 231 (1970)

    Article  ADS  Google Scholar 

  4. Dhar, A.: Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86, 5882 (2001)

    Article  ADS  Google Scholar 

  5. Dhar, A., Roy, D.: Heat transport in Harmonic lattices. J. Stat. Phys. 125, 801 (2006)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  6. Casher, A., Lebowitz, J.L.: Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12, 1701 (1971)

    Article  ADS  Google Scholar 

  7. Zurcher, U., Talkner, P.: Quantum-mechanical harmonic chain attached to heat baths, II: nonequilibrium properties. Phys. Rev. A 42, 3278 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Saito, K., Takesue, S., Miyashita, S.: Energy transport in the integrable system in contact with various types of phonon reservoirs. Phys. Rev. E 61, 2397 (2000)

    ADS  Article  Google Scholar 

  9. Dhar, A., Shastry, B.S.: Quantum transport using the Ford-Kac-Mazur formalism. Phys. Rev. B 67, 195405 (2003)

    Article  ADS  Google Scholar 

  10. Segal, D., Nitzan, A., Hanggi, P.: Thermal conductance through molecular wires. J. Chem. Phys. 119, 6840 (2003)

    Article  ADS  Google Scholar 

  11. Yamamoto, T., Watanabe, K.: Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys. Rev. Lett. 96, 255503 (2006)

    Article  ADS  Google Scholar 

  12. Wang, J.-S., Wang, J., Zeng, N.: Nonequilibrium Green’s function approach to mesoscopic thermal transport. Phys. Rev. B 74, 033408 (2006)

    Article  ADS  Google Scholar 

  13. Dhar, A.: unpublished notes

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Abhishek Dhar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roy, D., Dhar, A. Heat Transport in Ordered Harmonic Lattices. J Stat Phys 131, 535–541 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Harmonic crystal
  • Langevin equations
  • Ohmic baths
  • Heat conduction