Skip to main content
Log in

Quenched Invariance Principles for Random Walks with Random Conductances

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove an almost sure invariance principle for a random walker among i.i.d. conductances in ℤd, d≥2. We assume conductances are bounded from above but we do not require that they are bounded from below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24, 1036–1048 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bass, R.F.: On Aronson’s upper bounds for heat kernels. Bull. Lond. Math. Soc. 34, 415–419 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137, 83–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger, N., Biskup, M., Hoffman, C., Kozma, G.: Anomalous heat kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré (2007, to appear)

  6. Billingsley, P.: The convergence of probability measures. Wiley, New York (1968)

    Google Scholar 

  7. Biskup, M., Prescott, T.M.: Functional CLT for random walk among bounded random conductances. Preprint (2007)

  8. De Masi, A., Ferrari, P., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3/4), 787–855 (1989)

    Article  ADS  MATH  Google Scholar 

  9. Deuschel, J.-D., Pisztora, A.: Surface order deviations for high density percolation. Probab. Theory Relat. Fields 104, 467–482 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fontes, L.R.G., Mathieu, P.: On symmetric random walks with random conductances on ℤd. Probab. Theory Relat. Fields 134, 565–602 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  12. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)

    MATH  Google Scholar 

  13. Kozlov, S.M.: The method of averaging and walks in inhomogeneous environments. Russ. Math. Surv. 40(2), 73–145 (1985)

    Article  MATH  Google Scholar 

  14. Mathieu, P., Piatnitski, A.L.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Mathieu, P., Remy, E.: Isoperimetry and heat kernel decay on percolations clusters. Ann. Probab. 32, 100–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129, 219–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mathieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathieu, P. Quenched Invariance Principles for Random Walks with Random Conductances. J Stat Phys 130, 1025–1046 (2008). https://doi.org/10.1007/s10955-007-9465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9465-z

Keywords

Navigation