Abstract
We prove an almost sure invariance principle for a random walker among i.i.d. conductances in ℤd, d≥2. We assume conductances are bounded from above but we do not require that they are bounded from below.
Similar content being viewed by others
References
Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24, 1036–1048 (1996)
Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004)
Bass, R.F.: On Aronson’s upper bounds for heat kernels. Bull. Lond. Math. Soc. 34, 415–419 (2002)
Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137, 83–120 (2007)
Berger, N., Biskup, M., Hoffman, C., Kozma, G.: Anomalous heat kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré (2007, to appear)
Billingsley, P.: The convergence of probability measures. Wiley, New York (1968)
Biskup, M., Prescott, T.M.: Functional CLT for random walk among bounded random conductances. Preprint (2007)
De Masi, A., Ferrari, P., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3/4), 787–855 (1989)
Deuschel, J.-D., Pisztora, A.: Surface order deviations for high density percolation. Probab. Theory Relat. Fields 104, 467–482 (1996)
Fontes, L.R.G., Mathieu, P.: On symmetric random walks with random conductances on ℤd. Probab. Theory Relat. Fields 134, 565–602 (2006)
Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)
Kozlov, S.M.: The method of averaging and walks in inhomogeneous environments. Russ. Math. Surv. 40(2), 73–145 (1985)
Mathieu, P., Piatnitski, A.L.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. A 463, 2287–2307 (2007)
Mathieu, P., Remy, E.: Isoperimetry and heat kernel decay on percolations clusters. Ann. Probab. 32, 100–128 (2004)
Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)
Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129, 219–244 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mathieu, P. Quenched Invariance Principles for Random Walks with Random Conductances. J Stat Phys 130, 1025–1046 (2008). https://doi.org/10.1007/s10955-007-9465-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-007-9465-z