Skip to main content
Log in

A Contour Method on Cayley Trees

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider finite-range lattice models on Cayley trees with two basic properties: the existence of only a finite number of ground states and with a Peierls type condition. We define the notion of a contour for the model on the Cayley tree. By a contour argument we show the existence of s different (where s is the number of ground states) Gibbs measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  2. Biskup, M., Borgs, C., Chayes, J.T., Kotecký, R.: Partition function zeros at first-order phase transitions: Pirogov–Sinai theory. J. Stat. Phys. 116, 97–155 (2004)

    Article  MATH  ADS  Google Scholar 

  3. Bleher, P.M., Ganikhodjaev, N.N.: On pure phases of the Ising model on the Bethe lattice. Theory Probab. Appl. 35, 216–227 (1990)

    Article  MathSciNet  Google Scholar 

  4. Bleher, P.M., Ruiz, J., Schonmann, R.H., Shlosman, S., Zagrebnov, V.A.: Rigidity of the critical phases on a Cayley tree. Mosc. Math. J. 3, 345–362 (2001)

    MathSciNet  Google Scholar 

  5. Borgs, C.: Statistical physics expansion methods in combinatorics and computer science. http://research.microsfort.com/~borgs/CBMS.pdf (2004)

  6. Bovier, A., Merola, I., Presutti, E., Zahradnik, M.: On the Gibbs phase rule in the Pirogov–Sinai regime. J. Stat. Phys. 114, 1235–1267 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Fernández, R.: Contour ensembles and the description of Gibbsian probability distributions at low temperature. www.univ-rouen.fr/LMRS/persopage/Fernandez (1998)

  8. Ganikhodjaev, N.N.: On pure phases of the ferromagnet Potts with three states on the Bethe lattice of order two. Theor. Math. Phys. 85, 163–175 (1990)

    Google Scholar 

  9. Ganikhodjaev, N.N., Rozikov, U.A.: A description of periodic extremal Gibbs measures of some lattice models on the Cayley tree. Theor. Math. Phys. 111, 480–486 (1997)

    Article  Google Scholar 

  10. Ganikhodjaev, N.N., Rozikov, U.A.: The Potts model with countable set of spin values on a Cayley tree. Lett. Math. Phys. 75, 99–109 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter, Berlin (1988)

    MATH  Google Scholar 

  12. Grimmett, G.: The Random-Cluster Model. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Kotecky, R., Shlosman, S.B.: First-order phase transition in large entropy lattice models. Commun. Math. Phys. 83, 493–515 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lebowitz, J.L., Mazel, A.E.: On the uniqueness of Gibbs states in the Pirogov–Sinai theory. Commun. Math. Phys. 189, 311–321 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Martin, J.B., Rozikov, U.A., Suhov, Y.M.: A three state hard-core model on a Cayley tree. J. Nonlinear Math. Phys. 12, 432–448 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Mazel, A.E., Suhov, Y.M.: Random surfaces with two-sided constraints: an application of the theory of dominant ground states. J. Stat. Phys. 64, 111–134 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Minlos, R.A.: Introduction to Mathematical Statistical Physics. University Lecture Series, vol. 19. AMS, Providence (2000)

    Google Scholar 

  18. Mossel, E.: Survey: information flow on trees. In: Graphs, Morphisms and Statistical Physics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 63, pp. 155–170. AMS, Providence (2004)

    Google Scholar 

  19. Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras. J. Stat. Phys. 114, 825–848 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras. J. Stat. Phys. 119, 427–446 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Peierls, R.: On Ising model of ferro magnetism. Proc. Cambr. Phil. Soc. 32, 477–481 (1936)

    Article  MATH  Google Scholar 

  22. Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25, 1185–1192 (1975)

    Article  MathSciNet  Google Scholar 

  23. Pirogov, S.A., Sinai, Y.G.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 26, 39–49 (1976)

    Article  MathSciNet  Google Scholar 

  24. Rozikov, U.A.: On q-component models on Cayley tree: contour method. Lett. Math. Phys. 71, 27–38 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Rozikov, U.A.: An example of one-dimensional phase transition. Sib. Adv. Math. 16, 121–125 (2006)

    MathSciNet  Google Scholar 

  26. Rozikov, U.A.: A constructive description of ground states and Gibbs measures for Ising model with two-step interactions on Cayley tree. J. Stat. Phys. 122, 217–235 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Rozikov, U.A., Shoyusupov, S.A.: Gibbs measures for the SOS model with four states on a Cayley tree. Theor. Math. Phys. 149, 1312–1323 (2006)

    Article  MathSciNet  Google Scholar 

  28. Rozikov, U.A., Suhov, Y.M.: A hard-core model on a Cayley tree: an example of a loss network. Queueing Syst. 46, 197–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rozikov, U.A., Suhov, Y.M.: Gibbs measures for SOS model on a Cayley tree. Inf. Dim. Anal. Quant. Prob. Rel. Fields. 9, 471–488 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sinai, Y.G.: Theory of Phase Transitions: Rigorous Results. Pergamon, Oxford (1982)

    MATH  Google Scholar 

  31. Zachary, S.: Countable state space Markov random fields and Markov chains on trees. Ann. Probab. 11, 894–903 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zahradnik, M.: An alternate version of Pirogov–Sinai theory. Commun. Math. Phys. 93, 559–581 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. Zahradnik, M.: A short course on the Pirogov–Sinai theory. Rendi. Math. Ser. VII 18, 411–486 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Rozikov.

Additional information

Dedicated to N.N. Ganikhodjaev on the occasion of his 60th birthday.

The work supported by NATO Reintegration Grant: FEL.RIG.980771.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozikov, U.A. A Contour Method on Cayley Trees. J Stat Phys 130, 801–813 (2008). https://doi.org/10.1007/s10955-007-9455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9455-1

Keywords

Navigation