Skip to main content
Log in

A Two-Surface Problem of the Electron Flow in a Semiconductor on the Basis of Kinetic Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A steady flow of electrons in a semiconductor between two parallel plane Ohmic contacts is studied on the basis of the semiconductor Boltzmann equation, assuming a relaxation-time collision term, and the Poisson equation for the electrostatic potential. A systematic asymptotic analysis of the Boltzmann–Poisson system for small Knudsen numbers (scaled mean free paths) is carried out in the case where the Debye length is of the same order as the distance between the contacts and where the applied potential is of the same order as the thermal potential. A system of drift-diffusion-type equations and their boundary conditions is obtained up to second order in the Knudsen number. A numerical comparison is made between the obtained system and the original Boltzmann–Poisson system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Roosbroeck, W.: Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950)

    Google Scholar 

  2. Bløtekjær, K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron. Devices 17, 38 (1970)

    Google Scholar 

  3. Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002 (1962)

    Article  ADS  Google Scholar 

  4. Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37, 3306 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Ben Abdallah, N., Degond, P., Génieys, S.: An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84, 205 (1996)

    Article  MATH  Google Scholar 

  6. Degond, P., Génieys, S., Jüngel, A.: A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. 76, 991 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Ben Abdallah, N., Desvillettes, L., Génieys, S.: On the convergence of the Boltzmann equation for semiconductors toward the energy transport model. J. Stat. Phys. 98, 835 (2000)

    Article  MATH  Google Scholar 

  8. Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with non-parabolic band structure. SIAM J. Sci. Comput. 22, 986 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Anile, A., Muscato, O.: Improved hydrodynamic model for carrier transport in semiconductors. Phys. Rev. B 51, 16728 (1995)

    Article  ADS  Google Scholar 

  10. Grasser, T., Kosina, H., Gritsch, M.: Using six moments of Boltzmann’s transport equation for device simulation. J. Appl. Phys. 90, 2389 (2001)

    Article  ADS  Google Scholar 

  11. Yamnahakki, A.: Second order boundary conditions for the drift-diffusion equations for semiconductors. Math. Models Methods Appl. Sci. 5, 429 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cercignani, C., Gamba, I.M., Levermore, C.D.: A drift-collision balance for a Boltzmann–Poisson system in bounded domains. SIAM J. Appl. Math. 61, 1932 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ringhofer, C., Schmeiser, C., Zwirchmayr, A.: Moment methods for the semiconductor Boltzmann equation on bounded position domains. SIAM J. Numer. Anal. 39, 1078 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Baranger, H.U., Wilkins, J.W.: Ballistic structure in the electron distribution function of small semiconducting structures: General features and specific trends. Phys. Rev. B 36, 1487 (1987)

    Article  ADS  Google Scholar 

  15. Baranger, H.U., Wilkins, J.W.: Phys. Rev. B 30, 7349 (1984)

    Article  ADS  Google Scholar 

  16. Trugman, S.A., Taylor, A.J.: Analytic solution of the Boltzmann equation with applications to electrons transport in inhomogeneous semiconductors. Phys. Rev. B 33, 5575 (1986)

    Article  ADS  Google Scholar 

  17. Kuhn, T., Mahler, G.: Carrier kinetics in a surface-excited semiconductor slab: Influence of boundary conditions. Phys. Rev. B 35, 2827 (1987)

    Article  ADS  Google Scholar 

  18. Sano, N.: Kinetic study of velocity distributions in nanoscale semiconductor devices under room-temperature operation. Appl. Phys. Lett. 85, 4208 (2004)

    Article  ADS  Google Scholar 

  19. Csontos, D., Ulloa, S.E.: Quasiballistic, nonequilibrium electron distribution in inhomogeneous semiconductor structures. Appl. Phys. Lett. 86, 253103 (2005)

    Article  Google Scholar 

  20. Poupaud, F.: Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers. Asymptot. Anal. 4, 293 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6, 135 (1992)

    MATH  MathSciNet  Google Scholar 

  22. Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Degond, P., Schmeiser, C.: Kinetic boundary layers and fluid-kinetic coupling in semiconductors. Trans. Theory Stat. Phys. 28, 31 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sone, Y.: Asymptotic theory of flow of rarefied gas over a smooth boundary I. In: Trilling, L., Wachman, H.Y. (eds.) Rarefied Gas Dynamics, vol. 1, p. 243. Academic Press, New York (1969)

    Google Scholar 

  25. Sone, Y., Yamamoto, K.: Flow of rarefied gas over plane wall. J. Phys. Soc. Jpn. 29, 495 (1970)

    Article  ADS  Google Scholar 

  26. Sone, Y., Onishi, Y.: J. Phys. Soc. Jpn. 47, 672 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sone, Y.: Asymptotic theory of flow of rarefied gas over a smooth boundary II. In: Dini, D. (ed.) Rarefied Gas Dynamics, vol. 2, p. 737. Editrice Tecnico Scientfica, Pisa (1971)

    Google Scholar 

  28. Sone, Y.: Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers. In: Gatignol, R., Soubbaramayer. (eds.) Advances in Kinetic Theory and Continuum Mechanics, p. 19. Springer, Berlin (1991)

    Google Scholar 

  29. Sone, Y., Aoki, K., Takata, S., Sugimoto, H., Bobylev, A.V.: Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation. Phys. Fluids 8, 628 (1996). Erratum 8, 841 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Sone, Y., Bardos, C., Golse, F., Sugimoto, H.: Asymptotic theory of the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: General theory. Eur. J. Mech. B/Fluids 19, 325 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  32. Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhäuser, Boston (2006)

    Google Scholar 

  33. Aoki, K., Takata, S., Nakanishi, T.: Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force. Phys. Rev. E 65, 026315 (2002)

    Article  ADS  Google Scholar 

  34. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511 (1954)

    Article  MATH  ADS  Google Scholar 

  35. Welander, P.: On the temperature jump in a rarefied gas. Ark. Fys. 7, 507 (1954)

    MathSciNet  Google Scholar 

  36. Kogan, M.N.: On the equations of motion of a rarefied gas. Appl. Math. Mech. 22, 597 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  37. Chu, C.K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12 (1965)

    Article  Google Scholar 

  38. Aoki, K., Nishino, K., Sone, Y., Sugimoto, H.: Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: Effect of gas motion along the condensed phase. Phys. Fluids A 3, 2260 (1991)

    Article  MATH  ADS  Google Scholar 

  39. Ben Abdallah, N., Degond, P.: The Child–Langmuir law for the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 26, 364 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  40. Poupaud, F.: Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. Z. Angew. Math. Mech. 72, 359 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Cercignani, C., Gamba, I., Levermore, C.: High field approximations to a Boltzmann–Poisson system and boundary conditions in a semiconductor. Appl. Math. Lett. 10, 111 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. Willis, D.R.: Comparison of kinetic theory analyses of linearized Couette flow. Phys. Fluids 5, 127 (1962)

    Article  MATH  Google Scholar 

  43. Sone, Y.: Kinetic theory analysis of linearized Rayleigh problem. J. Phys. Soc. Jpn. 19, 1463 (1964)

    Article  ADS  Google Scholar 

  44. Sone, Y.: Some remarks on Knudsen layer. J. Phys. Soc. Jpn. 21, 1620 (1966)

    Article  ADS  Google Scholar 

  45. Tamada, K., Sone, Y.: Some studies on rarefied gas flows. J. Phys. Soc. Jpn. 21, 1439 (1966)

    Article  ADS  Google Scholar 

  46. Sone, Y.: Thermal creep in rarefied gas. J. Phys. Soc. Jpn. 21, 1836 (1966)

    Article  ADS  Google Scholar 

  47. Sone, Y., Onishi, Y.: Kinetic theory of evaporation and condensation—hydrodynamic equation and slip boundary condition. J. Phys. Soc. Jpn. 44, 1981 (1978)

    Article  ADS  Google Scholar 

  48. Sone, Y., Yamamoto, K.: Flow of rarefied gas through a circular pipe. Phys. Fluids 11, 1672 (1968). Erratum 13, 1651 (1970)

    Article  MATH  Google Scholar 

  49. Sone, Y.: Effect of sudden change of wall temperature in rarefied gas. J. Phys. Soc. Jpn. 20, 222 (1965)

    Article  ADS  Google Scholar 

  50. Sone, Y., Onishi, Y.: Kinetic theory of evaporation and condensation. J. Phys. Soc. Jpn. 35, 1773 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taguchi, S., Jüngel, A. A Two-Surface Problem of the Electron Flow in a Semiconductor on the Basis of Kinetic Theory. J Stat Phys 130, 313–342 (2008). https://doi.org/10.1007/s10955-007-9426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9426-6

Keywords

Navigation