Abstract
A steady flow of electrons in a semiconductor between two parallel plane Ohmic contacts is studied on the basis of the semiconductor Boltzmann equation, assuming a relaxation-time collision term, and the Poisson equation for the electrostatic potential. A systematic asymptotic analysis of the Boltzmann–Poisson system for small Knudsen numbers (scaled mean free paths) is carried out in the case where the Debye length is of the same order as the distance between the contacts and where the applied potential is of the same order as the thermal potential. A system of drift-diffusion-type equations and their boundary conditions is obtained up to second order in the Knudsen number. A numerical comparison is made between the obtained system and the original Boltzmann–Poisson system.
Similar content being viewed by others
References
Van Roosbroeck, W.: Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950)
Bløtekjær, K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron. Devices 17, 38 (1970)
Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002 (1962)
Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37, 3306 (1996)
Ben Abdallah, N., Degond, P., Génieys, S.: An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84, 205 (1996)
Degond, P., Génieys, S., Jüngel, A.: A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. 76, 991 (1997)
Ben Abdallah, N., Desvillettes, L., Génieys, S.: On the convergence of the Boltzmann equation for semiconductors toward the energy transport model. J. Stat. Phys. 98, 835 (2000)
Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with non-parabolic band structure. SIAM J. Sci. Comput. 22, 986 (2000)
Anile, A., Muscato, O.: Improved hydrodynamic model for carrier transport in semiconductors. Phys. Rev. B 51, 16728 (1995)
Grasser, T., Kosina, H., Gritsch, M.: Using six moments of Boltzmann’s transport equation for device simulation. J. Appl. Phys. 90, 2389 (2001)
Yamnahakki, A.: Second order boundary conditions for the drift-diffusion equations for semiconductors. Math. Models Methods Appl. Sci. 5, 429 (1995)
Cercignani, C., Gamba, I.M., Levermore, C.D.: A drift-collision balance for a Boltzmann–Poisson system in bounded domains. SIAM J. Appl. Math. 61, 1932 (2001)
Ringhofer, C., Schmeiser, C., Zwirchmayr, A.: Moment methods for the semiconductor Boltzmann equation on bounded position domains. SIAM J. Numer. Anal. 39, 1078 (2001)
Baranger, H.U., Wilkins, J.W.: Ballistic structure in the electron distribution function of small semiconducting structures: General features and specific trends. Phys. Rev. B 36, 1487 (1987)
Baranger, H.U., Wilkins, J.W.: Phys. Rev. B 30, 7349 (1984)
Trugman, S.A., Taylor, A.J.: Analytic solution of the Boltzmann equation with applications to electrons transport in inhomogeneous semiconductors. Phys. Rev. B 33, 5575 (1986)
Kuhn, T., Mahler, G.: Carrier kinetics in a surface-excited semiconductor slab: Influence of boundary conditions. Phys. Rev. B 35, 2827 (1987)
Sano, N.: Kinetic study of velocity distributions in nanoscale semiconductor devices under room-temperature operation. Appl. Phys. Lett. 85, 4208 (2004)
Csontos, D., Ulloa, S.E.: Quasiballistic, nonequilibrium electron distribution in inhomogeneous semiconductor structures. Appl. Phys. Lett. 86, 253103 (2005)
Poupaud, F.: Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers. Asymptot. Anal. 4, 293 (1991)
Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6, 135 (1992)
Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617 (1984)
Degond, P., Schmeiser, C.: Kinetic boundary layers and fluid-kinetic coupling in semiconductors. Trans. Theory Stat. Phys. 28, 31 (1999)
Sone, Y.: Asymptotic theory of flow of rarefied gas over a smooth boundary I. In: Trilling, L., Wachman, H.Y. (eds.) Rarefied Gas Dynamics, vol. 1, p. 243. Academic Press, New York (1969)
Sone, Y., Yamamoto, K.: Flow of rarefied gas over plane wall. J. Phys. Soc. Jpn. 29, 495 (1970)
Sone, Y., Onishi, Y.: J. Phys. Soc. Jpn. 47, 672 (1979)
Sone, Y.: Asymptotic theory of flow of rarefied gas over a smooth boundary II. In: Dini, D. (ed.) Rarefied Gas Dynamics, vol. 2, p. 737. Editrice Tecnico Scientfica, Pisa (1971)
Sone, Y.: Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers. In: Gatignol, R., Soubbaramayer. (eds.) Advances in Kinetic Theory and Continuum Mechanics, p. 19. Springer, Berlin (1991)
Sone, Y., Aoki, K., Takata, S., Sugimoto, H., Bobylev, A.V.: Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation. Phys. Fluids 8, 628 (1996). Erratum 8, 841 (1996)
Sone, Y., Bardos, C., Golse, F., Sugimoto, H.: Asymptotic theory of the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: General theory. Eur. J. Mech. B/Fluids 19, 325 (2000)
Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002)
Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhäuser, Boston (2006)
Aoki, K., Takata, S., Nakanishi, T.: Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force. Phys. Rev. E 65, 026315 (2002)
Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511 (1954)
Welander, P.: On the temperature jump in a rarefied gas. Ark. Fys. 7, 507 (1954)
Kogan, M.N.: On the equations of motion of a rarefied gas. Appl. Math. Mech. 22, 597 (1958)
Chu, C.K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12 (1965)
Aoki, K., Nishino, K., Sone, Y., Sugimoto, H.: Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: Effect of gas motion along the condensed phase. Phys. Fluids A 3, 2260 (1991)
Ben Abdallah, N., Degond, P.: The Child–Langmuir law for the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 26, 364 (1995)
Poupaud, F.: Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. Z. Angew. Math. Mech. 72, 359 (1992)
Cercignani, C., Gamba, I., Levermore, C.: High field approximations to a Boltzmann–Poisson system and boundary conditions in a semiconductor. Appl. Math. Lett. 10, 111 (1997)
Willis, D.R.: Comparison of kinetic theory analyses of linearized Couette flow. Phys. Fluids 5, 127 (1962)
Sone, Y.: Kinetic theory analysis of linearized Rayleigh problem. J. Phys. Soc. Jpn. 19, 1463 (1964)
Sone, Y.: Some remarks on Knudsen layer. J. Phys. Soc. Jpn. 21, 1620 (1966)
Tamada, K., Sone, Y.: Some studies on rarefied gas flows. J. Phys. Soc. Jpn. 21, 1439 (1966)
Sone, Y.: Thermal creep in rarefied gas. J. Phys. Soc. Jpn. 21, 1836 (1966)
Sone, Y., Onishi, Y.: Kinetic theory of evaporation and condensation—hydrodynamic equation and slip boundary condition. J. Phys. Soc. Jpn. 44, 1981 (1978)
Sone, Y., Yamamoto, K.: Flow of rarefied gas through a circular pipe. Phys. Fluids 11, 1672 (1968). Erratum 13, 1651 (1970)
Sone, Y.: Effect of sudden change of wall temperature in rarefied gas. J. Phys. Soc. Jpn. 20, 222 (1965)
Sone, Y., Onishi, Y.: Kinetic theory of evaporation and condensation. J. Phys. Soc. Jpn. 35, 1773 (1973)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Taguchi, S., Jüngel, A. A Two-Surface Problem of the Electron Flow in a Semiconductor on the Basis of Kinetic Theory. J Stat Phys 130, 313–342 (2008). https://doi.org/10.1007/s10955-007-9426-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-007-9426-6