Skip to main content
Log in

On the Validity of Entropy Production Principles for Linear Electrical Circuits

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We explain the (non-)validity of close-to-equilibrium entropy production principles in the context of linear electrical circuits. Both the minimum and the maximum entropy production principles are understood within dynamical fluctuation theory. The starting point are Langevin equations obtained by combining Kirchoff’s laws with a Johnson-Nyquist noise at each dissipative element in the circuit. The main observation is that the fluctuation functional for time averages, that can be read off from the path-space action, is in first order around equilibrium given by an entropy production rate.

That allows to understand beyond the schemes of irreversible thermodynamics (1) the validity of the least dissipation, the minimum entropy production, and the maximum entropy production principles close to equilibrium; (2) the role of the observables’ parity under time-reversal and, in particular, the origin of Landauer’s counterexample (1975) from the fact that the fluctuating observable there is odd under time-reversal; (3) the critical remark of Jaynes (1980) concerning the apparent inappropriateness of entropy production principles in temperature-inhomogeneous circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Minimum dissipation principle in stationary non equilibrium states. J. Stat. Phys. 116, 831 (2004)

    Article  MATH  ADS  Google Scholar 

  2. Bruers, S.: Classification and discussion of macroscopic entropy production principles. arXiv:cond-mat/0604482

  3. Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)

    Article  ADS  Google Scholar 

  4. Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications. Jones and Barlett, Boston (1993)

    Google Scholar 

  5. Derrida, B.: Non equilibrium steady states: fluctuations and large deviations of the density and of the current. arXiv:cond-mat/0703762v1

  6. Donsker, M.D., Varadhan, S.R.: Asymptotic evaluation of certain Markov process expectations for large time, I. Commun. Pure Appl. Math. 28, 1 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dürr, D., Bach, A.: The Onsager–Machlup function as Lagrangian for the most probable path of a diffusion process. Commun. Math. Phys. 60, 153–170 (1978)

    Article  MATH  ADS  Google Scholar 

  8. Graham, R.: Path integral formulation of general diffusion processes. Z. Phys. B 26, 281–290 (1977)

    Article  ADS  Google Scholar 

  9. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1969)

    Google Scholar 

  10. Hjelmfelt, A., Ross, J.: Thermodynamic and stochastic theory of electrical circuits. Phys. Rev. A 45, 2201 (1992)

    Article  ADS  Google Scholar 

  11. Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)

    Article  ADS  Google Scholar 

  12. Jiang, D.-Q., Qian, M., Qian, M.-P.: Mathematical Theory of Nonequilibrium Steady States. Lecture Notes in Mathematics, vol. 833. Springer, New York (2004)

    MATH  Google Scholar 

  13. Jordan, A.N., Suhorukov, E.V., Pilgram, S.: Fluctuation statistics in networks: a stochastic path integral approach. J. Math. Phys. 45, 4386 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Landauer, R.: Inadequacy of entropy and entropy derivatives in characterizing the steady state. Phys. Rev. A 12, 636–638 (1975)

    Article  ADS  Google Scholar 

  15. Landauer, R.: Stability and entropy production in electrical circuits. J. Stat. Phys. 13, 1–16 (1975)

    Article  ADS  Google Scholar 

  16. Landauer, R.: Statistical physics of machinery: forgotten middle-ground. Physica A 194, 551–562 (1993)

    Article  ADS  Google Scholar 

  17. Maes, C.: Fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Maes, C.: On the origin and the use of fluctuation relations for the entropy. In: Dalibard, J., Duplantier, B., Rivasseau, V. (eds.) Séminaire Poincaré, vol. 2, pp. 29–62. Birkhäuser, Basel (2003)

    Google Scholar 

  19. Maes, C., Netočný, K.: Time–reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)

    Article  MATH  Google Scholar 

  20. Maes, C., Netočný, K.: Static and dynamical nonequilibrium fluctuations. C. R. Phys. 8, 591–597 (2007)

    Article  ADS  Google Scholar 

  21. Maes, C., Netočný, K.: Minimum entropy production principle from a dynamical fluctuation law. J. Math. Phys. 48, 053306 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Maes, C., Netočný, K.: The canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states. arXiv:cond-mat/0705.2344

  23. Martyushev, L.M., Nazarova, A.S., D Seleznev, V.: On the problem of the minimum entropy production in the nonequilibrium stationary state. J. Phys. A: Math. Theory 40, 371–380 (2007)

    Article  MATH  ADS  Google Scholar 

  24. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  25. Prigogine, I.: Introduction to Non-Equilibrium Thermodynamics. Wiley, New York (1962)

    Google Scholar 

  26. Varadhan, S.R.S.: Large Deviations and Entropy. In: Greven, A., Keller, G., Warnecke, G. (eds.) Entropy. Princeton University Press, Princeton and Oxford (2003)

    Google Scholar 

  27. Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  28. Županović, P., Juretić, D., Botrić, S.: Kirchhoff’s loop law and the maximum entropy production principle. Phys. Rev. E 70, 056108 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Maes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruers, S., Maes, C. & Netočný, K. On the Validity of Entropy Production Principles for Linear Electrical Circuits. J Stat Phys 129, 725–740 (2007). https://doi.org/10.1007/s10955-007-9412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9412-z

Keywords

Navigation