Skip to main content
Log in

The Interfacial Profile in Two-Loop Order

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The profile of interfaces separating different phases of statistical systems is investigated in the framework of renormalized field theory. The profile function is calculated analytically in the local potential approximation, using the effective potential to two loops. It can be interpreted as an intrinsic interfacial profile. The loop corrections to the leading tanh-type term turn out to be small. They yield a broadening of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Widom, B.: In: Domb, C., Green, M. (eds.) Phase Transitions and Critical Phenomena, vol. 2. Academic Press, New York (1972)

    Google Scholar 

  2. Rowlinson, J., Widom, S.: Molecular Theory of Capillarity. Clarendon, Oxford (1982)

    Google Scholar 

  3. Binder, K.: Critical behavior at surfaces. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 8. Academic Press, New York (1983)

    Google Scholar 

  4. Jasnow, D.: Critical phenomena at interfaces. Rep. Prog. Phys. 47, 1059–1132 (1984)

    Article  ADS  Google Scholar 

  5. Safran, S.A.: Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Addison–Wesley, Reading (1994)

    Google Scholar 

  6. Binder, K.: Finite size effects in thin film simulations. In: Dünweg, B., Landau, D.P., Milchev, A. (eds.) Computer Simulations of Surfaces and Interfaces. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  7. Binder, K.: Simulations of interfaces between coexisting phases: multiscale aspects. In: Brandt, A., Bernholc, J., Binder, K. (eds.) Multiscale Simulations in Chemistry and Physics. IOS Press, Amsterdam (2001)

    Google Scholar 

  8. Huang, J.S., Webb, W.W.: Viscous damping of thermal excitations on the interface of critical fluid mixtures. Phys. Rev. Lett. 23, 160–163 (1969)

    Article  ADS  Google Scholar 

  9. Langevin, D. (ed.): Light Scattering by Liquid Surfaces and Complementary Techniques. Dekker, New York (1992)

    Google Scholar 

  10. Thomas, R.K.: Neutron reflection from liquid interfaces. Ann. Rev. Phys. Chem. 55, 91–426 (2004)

    Article  Google Scholar 

  11. Stauffer, D.: Oil-water interfaces in the Ising-model. Prog. Colloid Polym. Sci. 103, 60–66 (1997)

    Article  Google Scholar 

  12. Werner, A., Schmid, F., Müller, M., Binder, K.: Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin film geometry: a Monte-Carlo simulation. J. Chem. Phys. 107, 8175–8188 (1997)

    Article  ADS  Google Scholar 

  13. Werner, A., Schmid, F., Müller, M., Binder, K.: “Intrinsic” profiles and capillary waves at homopolymer interfaces: a Monte Carlo study. Phys. Rev. E 59, 728–738 (1999)

    Article  ADS  Google Scholar 

  14. Dünweg, B., Landau, D.P., Milchev, A. (eds.): Computer Simulations of Surfaces and Interfaces. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  15. Müller, M., Münster, G.: Profile and width of rough interfaces. J. Stat. Phys. 118, 669–686 (2005)

    Article  MATH  ADS  Google Scholar 

  16. van der Waals, J.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Verhandel Konink. Akad. Weten. 1, (1893). English translation: J. Rowlinson, J. Stat. Phys. 20, 97–244 (1979)

  17. Le Bellac, M.: Quantum and Statistical Field Theory. Clarendon, Oxford (1991)

    Google Scholar 

  18. Cahn, J., Hilliard, J.: Free energy of a nonuniform system. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  19. Fisk, S., Widom, B.: Structure and free energy of the interface between fluid phases in equilibrium near the critical point. J. Chem. Phys. 50, 3219–3227 (1960)

    Article  ADS  Google Scholar 

  20. Buff, F., Lovett, R., Stillinger, F.: Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621–623 (1965)

    Article  ADS  Google Scholar 

  21. Weeks, J.: Structure and thermodynamics of the liquid–vapor interface. J. Chem. Phys. 67, 3106–3121 (1977)

    Article  ADS  Google Scholar 

  22. Parisi, G.: Field-theoretic approach to second-order phase transition in two-and three-dimensional systems. J. Stat. Phys. 23, 49–82 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  23. Le Guillou, J.C., Zinn-Justin, J.: Critical exponents from field theory. Phys. Rev. B 21, 3976–3998 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  24. Münster, G.: Interface tension in three-dimensional systems from field theory. Nucl. Phys. B 340, 559–567 (1990)

    Article  ADS  Google Scholar 

  25. Münster, G., Heitger, J.: Field-theoretic calculation of the universal amplitude ratio of correlation lengths in 3D Ising systems. Nucl. Phys. B 424, 582–594 (1994)

    Article  ADS  Google Scholar 

  26. Gutsfeld, C., Küster, J., Münster, G.: Calculation of universal amplitude ratios in three-loop order. Nucl. Phys. B 479, 654–662 (1996)

    Article  ADS  Google Scholar 

  27. Küster, J.: Kritisches Verhalten fluktuierender Grenzflächen. PhD thesis, Univ. of Münster (2001)

  28. Ohta, T., Kawasaki, K.: Renormalization group approach to the interfacial order parameter profile near the critical point. Prog. Theor. Phys. 58, 467–481 (1977)

    Article  ADS  Google Scholar 

  29. Rudnick, J., Jasnow, D.: ε expansion for the interfacial profile. Phys. Rev. B 17, 1351–1354 (1978)

    Article  ADS  Google Scholar 

  30. Jasnow, D., Rudnick, J.: Interfacial profile in three dimensions. Phys. Rev. Lett. 41, 698–701 (1978)

    Article  ADS  Google Scholar 

  31. Sikkenk, J.H., van Leeuwen, J.M.J.: ε-expansion for the interfacial profile in an external field. Physica A 137, 156–177 (1986)

    Article  ADS  Google Scholar 

  32. Jackiw, R.: Functional evaluation of the effective potential. Phys. Rev. D 9, 1686–1701 (1974)

    ADS  Google Scholar 

  33. Iliopoulos, J., Itzykson, C., Martin, A.: Functional methods and perturbation theory. Rev. Mod. Phys. 47, 165–192 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  34. Amit, D.J.: Field Theory, the Renormalization Group and Critical Phenomena. McGraw–Hill, New York (1978)

    Google Scholar 

  35. Coleman, S., Weinberg, E.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888–1910 (1973)

    ADS  Google Scholar 

  36. Weinberg, E.J., Wu, A.: Understanding complex perturbative effective potentials. Phys. Rev. D 36, 2474–2480 (1987)

    ADS  MathSciNet  Google Scholar 

  37. Sher, M.: Electroweak Higgs potentials and vacuum stability. Phys. Rep. 179, 273–418 (1989)

    Article  ADS  Google Scholar 

  38. Meyer-Ortmanns, H., Reisz, T.: Principles of Phase Structures in Particle Physics. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  39. Symanzik, K.: Renormalizable models with simple symmetry breaking, I: symmetry breaking by a source term. Commun. Math. Phys. 16, 48–80 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  40. Langer, J.S.: Statistical theory of the decay of metastable states. Ann. Phys. 54, 258–275 (1969)

    Article  ADS  Google Scholar 

  41. Münster, G., Rotsch, S.: Analytical calculation of the nucleation rate for first order phase transitions beyond the thin wall approximation. Eur. Phys. J. C 12, 161–171 (2000)

    ADS  Google Scholar 

  42. Binder, K.: Spinodal decomposition. In: Cahn, R.W., Haasen, P., Kramer, E.J. (eds.) Materials Science and Technology, vol. 5: Phase Transformations in Materials. Wiley–VCH, Weinheim (1991)

    Google Scholar 

  43. Lüscher, M., Weisz, P.: Scaling laws and triviality bounds in the lattice φ 4-theory; one-component model in the phase with spontaneous broken symmetry. Nucl. Phys. B 295, 65–92 (1987)

    Article  Google Scholar 

  44. Caselle, M., Hasenbusch, M.: Universal amplitude ratios in the 3D Ising model. J. Phys. A 30, 4963–4982 (1997)

    MATH  ADS  Google Scholar 

  45. Liu, A.J., Fisher, M.E.: The three-dimensional Ising model revisited numerically. Physica A 156, 35–76 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  46. Guida, R., Zinn-Justin, J.: Critical exponents of the N-vector model. J. Phys. A 31, 8103–8121 (1998)

    MATH  ADS  MathSciNet  Google Scholar 

  47. Hasenbusch, M., Pinn, K., Vinti, S.: Critical exponents of the 3D Ising universality class from finite size scaling with standard and improved actions. Phys. Rev. B 59, 11471 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Münster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küster, J., Münster, G. The Interfacial Profile in Two-Loop Order. J Stat Phys 129, 441–451 (2007). https://doi.org/10.1007/s10955-007-9404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9404-z

Keywords

Navigation