Skip to main content
Log in

A Generalization of the Stillinger–Lovett Sum Rules for the Two-Dimensional Jellium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the equilibrium statistical mechanics of classical Coulomb fluids, the long-range tail of the Coulomb potential gives rise to the Stillinger–Lovett sum rules for the charge correlation functions. For the jellium model of mobile particles of charge q immersed in a neutralizing background, the Stillinger–Lovett sum rules give the charge and second moment of the screening cloud around a particle of the jellium. In this paper, we generalize these sum rules to the screening cloud induced around a pointlike guest charge Zq immersed in the bulk interior of the 2D jellium with the coupling constant Γ=β q 2 (β is the inverse temperature), in the whole region of the thermodynamic stability of the guest charge amplitude Z>−2/Γ. The derivation is based on a mapping technique of the 2D jellium at the coupling Γ = (even positive integer) onto a discrete 1D anticommuting-field theory; we assume that the final results remain valid for all real values of Γ corresponding to the fluid regime. The generalized sum rules reproduce for arbitrary coupling Γ the standard Z=1 and the trivial Z=0 results. They are also checked in the Debye–Hückel limit Γ→0 and at the free-fermion point Γ=2. The generalized second-moment sum rule provides some exact information about possible sign oscillations of the induced charge density in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choquard, P., Clérouin, J.: Phys. Rev. Lett. 50, 2086 (1983)

    Article  ADS  Google Scholar 

  2. McClarty, P.A., Moore, M.A.: Freezing effects in the two-dimensional one-component plasma and in thin film type II superconductors. arXiv:cond-mat/0702282

  3. Salzberg, A., Prager, S.: J. Chem. Phys. 38, 2587 (1963)

    Article  Google Scholar 

  4. Debye, P., Hückel, E.: Phys. Z. 24, 185 (1923)

    Google Scholar 

  5. Deutsch, C., Lavaud, M.: Phys. Rev. A 9, 2598 (1974)

    Article  ADS  Google Scholar 

  6. Jancovici, B.: Phys. Rev. Lett. 46, 386 (1981)

    Article  ADS  Google Scholar 

  7. Martin, P.A.: Rev. Mod. Phys. 60, 1075 (1988)

    Article  ADS  Google Scholar 

  8. Stillinger, F.H., Lovett, R.: J. Chem. Phys. 48, 3858 (1968)

    Article  Google Scholar 

  9. Stillinger, F.H., Lovett, R.: J. Chem. Phys. 49, 1991 (1968)

    Article  Google Scholar 

  10. Vieillefosse, P., Hansen, J.P.: Phys. Rev. A 12, 1106 (1975)

    Article  ADS  Google Scholar 

  11. Kalinay, P., Markoš, P., Šamaj, L., Travěnec, I.: J. Stat. Phys. 98, 639 (2000)

    Article  MATH  Google Scholar 

  12. Levin, Y.: Rep. Prog. Phys. 65, 1577 (2002)

    Article  ADS  Google Scholar 

  13. Téllez, G.: J. Stat. Phys. 122, 787 (2006)

    Article  MATH  Google Scholar 

  14. Šamaj, L., Percus, J.K.: J. Stat. Phys. 80, 811 (1995)

    Article  Google Scholar 

  15. Šamaj, L., Kalinay, P., Travěnec, I.: J. Phys. A: Math. Gen. 31, 327 (1998)

    Google Scholar 

  16. Šamaj, L.: J. Stat. Phys. 100, 949 (2000)

    Article  Google Scholar 

  17. Šamaj, L.: J. Stat. Phys. 117, 131 (2004)

    Article  Google Scholar 

  18. Berezin, F.A.: The Method of Second Quantization. Academic Press, New York (1966)

    MATH  Google Scholar 

  19. Choquard, P., Favre, P., Gruber, C.: J. Stat. Phys. 23, 405 (1980)

    Article  Google Scholar 

  20. Totsuji, H.: J. Chem. Phys. 75, 871 (1981)

    Article  ADS  Google Scholar 

  21. Téllez, G., Forrester, P.J.: J. Stat. Phys. 97, 489 (1999)

    Article  MATH  Google Scholar 

  22. Kennedy, T.: Comm. Math. Phys. 92, 269 (1983)

    Article  MATH  ADS  Google Scholar 

  23. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic Press, London (1994)

    MATH  Google Scholar 

  24. Jancovici, B.: Mol. Phys. 52, 1251 (1984)

    Article  Google Scholar 

  25. Suttorp, L.G., Van Wonderen, A.J.: Physica A 145, 533 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Šamaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šamaj, L. A Generalization of the Stillinger–Lovett Sum Rules for the Two-Dimensional Jellium. J Stat Phys 128, 1415–1428 (2007). https://doi.org/10.1007/s10955-007-9376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9376-z

Keywords

Navigation