Journal of Statistical Physics

, Volume 129, Issue 1, pp 121–149 | Cite as

Spectral Analysis of a Stochastic Ising Model in Continuum

  • Yu. KondratievEmail author
  • E. Zhizhina


We consider an equilibrium stochastic dynamics of spatial spin systems in ℝ d involving both a birth-and-death dynamics and a spin flip dynamics as well. Using a general approach to the spectral analysis of corresponding Markov generator, we estimate the spectral gap and construct one-particle invariant subspaces for the generator.


Birth-and-death process Continuous system Gibbs measure Glauber dynamics Continuous Ising model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelescu, N., Minlos, R.A., Zagrebnov, V.A.: The lower spectral branch of the generator of the stochastic dynamics for the classical Heisenberg model. In: Minlos, R.A., Shlosman, S., Suhov, Yu.M. (eds.) On Dobrushin’s Way: From Probability Theory to Statistical Physics. Amer. Math. Soc. Transl. (2), vol. 198, pp. 1–11 (2000) Google Scholar
  2. 2.
    Bertini, L., Cancrini, N., Cesi, F.: The spectral gap for a Glauber-type dynamics in a continuous gas. Ann. Inst. H. Poincaré Probab. Stat. 38, 91–108 (2002) zbMATHCrossRefGoogle Scholar
  3. 3.
    Kondratiev, Yu.G., Minlos, R.A.: One-particle subspaces in the stochastic XY model. J. Stat. Phys. 87(3/4), 613–642 (1997) zbMATHCrossRefGoogle Scholar
  4. 4.
    Kondratiev, Yu., Minlos, R., Zhizhina, E.: One-particle subspace of the Glauber dynamics generator for continuous particle systems. Rev. Math. Phys. 16(9), 1073–1114 (2004) zbMATHCrossRefGoogle Scholar
  5. 5.
    Kondratiev, Yu.G., Kuna, T.: Harmonic analysis on configuration spaces, I: general theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5, 201–233 (2002) zbMATHCrossRefGoogle Scholar
  6. 6.
    Kondratiev, Yu., Lytvynov, E.: Glauber dynamics of continuous particle systems. Ann. Inst. H. Poincare, Ser. B 41, 685–702 (2005) zbMATHCrossRefGoogle Scholar
  7. 7.
    Malyshev, V.A., Minlos, R.A.: Linear Infinite-Particle Operators. American Mathematical Society, Providence (1995) zbMATHGoogle Scholar
  8. 8.
    Minlos, R.A.: Invariant subspaces of Ising stochastic dynamics (for small β). Markov Process. Relat. Fields 2(2), 263–284 (1996) zbMATHGoogle Scholar
  9. 9.
    Minlos, R.A., Suhov, Yu.M.: On the spectrum of the generator of an infinite system of interacting diffusions. Commun. Math. Phys. 206, 463–489 (1999) zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Minlos, R.A.: Lectures on statistical physics. Usp. Mat. Nauk 1, 133–190 (1968) Google Scholar
  11. 11.
    Ruelle, D.: Statistical Mechanics. Rigorous Results. Benjamins, Amsterdam (1969) zbMATHGoogle Scholar
  12. 12.
    Ruelle, D.: Superstable interaction in classical statistical mechanics. Commun. Math. Phys. 18, 127–159 (1970) zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Wu, L.: Estimate of spectral gap for continuous gas. Ann. Inst. H. Poincare PR 40, 387–409 (2004) zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Zhizhina, E.: Convergence properties of quasi-particles of various species in the stochastic Blume–Capel model. Markov Process. Relat. Fields 10(2), 307–326 (2004) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dept. of Mathematics and BiBoSBielefeld UniversityBielefeldGermany
  2. 2.NaUKMAKievUkraine
  3. 3.IITP, Russian Acad. Sci.MoscowRussia

Personalised recommendations