Skip to main content
Log in

Critical and Compensation Temperatures of the Ising Bilayer System Consisting of Spin-1/2 and Spin-1 Atoms

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

The critical and compensation temperatures of the bilayer Bethe lattices with one of the layers having only spin-1/2 atoms and the other having only spin-1 atoms placed symmetrically are studied by using exact recursion relations in a pairwise approach. The Hamiltonian of the model consist of the bilinear intralayer coupling constants of the two layers J 1 and J 2 for the interactions of the atoms in layers with spin-1/2 and spin-1, respectively, and the bilinear interlayer coupling constant J 3 between the adjacent atoms with spin-1/2 and spin-1 of the layers. After obtaining the ground state phase diagram with J 1 > 0, the variations of the order-parameters and the free energy are investigated to obtain the phase diagram of the model by considering only the ferromagnetic ordering of the layers, i.e. J 1 > 0 and J 2 > 0, and ferromagnetic or antiferromagnetic ordering of the adjacent spins of the layers, J 3 > 0 or J 3 < 0, respectively. It was found that the system presents both second- and first-order phase transitions and, tricritical points. The compensation temperatures was also observed for the appropriate values of the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Elmers, Int. J. Mod. Phys. B 9:3115 (1995).

    Article  ADS  Google Scholar 

  2. Digest 13th Int. Colloq. on Magnetic Films and Surfaces, Glasgow (1991).

  3. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61:2472; G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 4828 (1989).

  4. J. Sayama, T. Asahi, K. Mizutani, and T. Osaka, J. Phys. D: Appl. Phys. 37:L1–L4 (2004).

    Article  ADS  Google Scholar 

  5. R. Wu and A. J. Freeman, Phys. Rev. B 45:7205 (1992); M. Donath, J. Phys.: Condens. Matter 11:9421 (1999).

    Google Scholar 

  6. R. C. O’Handley and S. W. Sun, Phys. Rev. Lett. 66:2798 (1991); G. Bochi, O. Song, and R. C. O’Handley, Phys. Rev. B 50:2043 (1994).

    Google Scholar 

  7. Y. M. Seidov and G. R. Shaulov, J. Phys.: Condens. Matter 6:9621 (1994); M. Jaščur and T. Kaneyoshi, J. Magn. Magn. Mater 168:47 (1997); B. Laaboudi, M. Saber, and M. Kerouad, Phys. Stat. Sol. (b) 212:153 (1999); T. Bouziane and A. Belaaraj, Phys. Stat. Sol. (b) 214:387 (1999); T. Kaneyoshi and S. Shin, Phys. Stat. Sol. (b) 218:537 (2000).

  8. F. Dujardin, B. Stébé, A. Ainane, and M. Saber, Chinese J. Phys. 37:479 (1999); T. Bouziane, Phys. Stat. Sol. (b) 217:951 (2000); M. Bentaleb, N. El Aouad, and M. Saber, Chinese J. Phys. 40:307 (2002).

  9. G. Wiatrowski, G. Bayreuther, and K. Pruegl, J. Mag. Magn. Mater. 196–197:26 (1999); G. Wiatrowski, Physica A 290:107 (2001).

    Google Scholar 

  10. M. Bengrine, A. Benyoussef, H. Ez-Zahraouy, and F. Mhirech, Physica A 268:149 (1999); H. Ez-Zahraouy and A. Kassou-Ou-Ali, Chinese J. Phys. 40:86 (2002).

    Google Scholar 

  11. L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy, Surf. Sci. 536:114 (2003); X.-G. Wang, N.-N. Liu, S.-H. Pand, and G.-Z. Yang, J. Magn. Magn. Mater. 212:121 (2000).

    Google Scholar 

  12. H. Ez-Zahraouy, L. Bahmad, and A. Benyoussef, Physica A 358:86 (2005).

    Article  ADS  Google Scholar 

  13. M. L. Lyra and C. R. da Silva, Phys. Rev. B 47:526 (1993).

    Article  ADS  Google Scholar 

  14. J. L. Monroe, Physica A 335:563 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  15. C.-K. Hu and N. Sh. Izmailian, Phys. Rev. E 59:6489 (1999); E. Albayrak, Phys. Stat. Sol. (b) 244:759 (2007).

  16. L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy, J. Magn. Magn. Mater. 251:115 (2002); A. Benyoussef, H. Ez-Zahraouy, H. Mahboub, and M. J. Ouazzani, Physica A 326:220 (2003).

    Google Scholar 

  17. J. W. Tucker, T. Balcerzak, M. Gzik, and A. Sukiennicki, J. Magn. Magn. Mater. 187:381 (1998); M. Gzik-Szumiata and T. Balcerzak, Acta Physica Slovaca 48:611 (1998).

    Google Scholar 

  18. L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy, Surf. Sci. 552:1 (2004); L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy, M. J. Condensed Matter 5:134 (2004).

    Google Scholar 

  19. E. Albayrak and O. Canko, Physica A 373:363 (2007); O. Canko and E. Albayrak, Phys. Rev. E 75:011116 (2007)

  20. D. Gatteshi, O. Khan, J. S. Miller, and F. Palacio (eds.) Magnetic Molecular Materials (NATO ASI Series) (Dordrecht, Kluwer Academic, 1991); O. Khan, Molecular Magnetism (VCH Publishers, New York, 1993).

  21. H. J. Williams, R. C. Sherwood, F. G. Foster, and E.M. Kelley, J. Appl. Phys. 28:1181 (1957).

    Article  ADS  Google Scholar 

  22. M. Bengrine, A. Benyoussef, A. El Kenz, M. Loulidi, and F. Mhirech, J. Magn. Magn. Mater. 183:334 (1998).

    Article  ADS  Google Scholar 

  23. K. Htoutou, A. Ainane, and M. Saber, J. Magn. Magn. Mater. 269:245 (2004).

    Article  ADS  Google Scholar 

  24. W. Jiang, G.-Z. Wei, and A. Du, J. Magn. Magn. Mater 250:49 (2002).

    Article  ADS  Google Scholar 

  25. W. Jiang and G.-Z. Wei, Physica B 362:236 (2005).

    Article  ADS  Google Scholar 

  26. M. Jaščur and T. Kaneyoshi, J. Phys.: Condens. Matter 5:6313 (1993).

    Article  ADS  Google Scholar 

  27. M. Bengrine, A. Benyoussef, A. El Kenz, and L. Peliti, Physica B 269:34 (1999).

    Article  ADS  Google Scholar 

  28. M. Jaščur and T. Kaneyoshi, Physica A 220:542 (1995).

    Article  ADS  Google Scholar 

  29. T. Kaneyoshi, Phys. Rev. B 52:7304 (1995).

    Article  ADS  Google Scholar 

  30. M. Jaščur and T. Kaneyoshi, J. Phys. Condens. Mater. 5:6313 (1993).

    Article  ADS  Google Scholar 

  31. M.-h. Yu and Z.-d. Zhang, J. Magn. Magn. Mater. 195:514 (1999).

    Article  ADS  Google Scholar 

  32. C.-K. Hu, N. Sh. Izmailian, and K. B. Oganesyan, Phys. Rev. E 59:6489 (1999); E. Albayrak, S. Yilmaz, and S. Akkaya, J. Magn. Magn. Mater 310:98 (2007).

  33. P. J. Jensen, K. H. Bennemann, K. Baberschke, P. Poulopoulos, and M. Farle, J. Appl. Phys. 87:6692 (2000).

    Article  ADS  Google Scholar 

  34. B. Schmittmann and R. K. P. Zia, Phys. Rep. 301:45 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Albayrak.

Additional information

PACS: 05.50.+q 05.70.Fh 64.60.Cn 75.10.Hk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albayrak, E., Bulut, T. & Yilmaz, S. Critical and Compensation Temperatures of the Ising Bilayer System Consisting of Spin-1/2 and Spin-1 Atoms. J Stat Phys 127, 967–983 (2007). https://doi.org/10.1007/s10955-007-9311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9311-3

Keywords

Navigation