Skip to main content
Log in

Mean Field Magnetic Phase Diagrams for the Two Dimensional tt′ — U Hubbard Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the ground state phase diagram of the two dimensional tt′ — U Hubbard model concentrating on the competition between antiferro-, ferro-, and paramagnetism. It is known that unrestricted Hartree–Fock- and quantum Monte Carlo calculations for this model predict inhomogeneous states in large regions of the parameter space. Standard mean field theory, i.e., Hartree–Fock theory restricted to homogeneous states, fails to produce such inhomogeneous phases. We show that a generalization of the mean field method to the grand canonical ensemble circumvents this problem and predicts inhomogeneous states, represented by mixtures of homogeneous states, in large regions of the parameter space. We present phase diagrams which differ considerably from previous mean field results but are consistent with, and extend, results obtained with more sophisticated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70:1039 (1998).

    Article  ADS  Google Scholar 

  2. E. Dagotto, Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66:763 (1994).

    Article  ADS  Google Scholar 

  3. E. Demler, W. Hanke, and S. C. Zhang, SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. 76:909 (2004).

    Article  ADS  Google Scholar 

  4. P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The ‘plain vanilla’ version of RVB. J. Phys.: Condens. Matter 16:R755 (2004).

    Article  ADS  Google Scholar 

  5. P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78:17 (2006).

    Article  ADS  Google Scholar 

  6. E. H. Lieb, Variational principle for many-fermion systems. Phys. Rev. Lett. 46:457 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Bach and J. Poelchau, Accuracy of the Hartree–Fock approximation for the Hubbard model. J. Math. Phys. 38:2072 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study. Phys. Rev. B 31:4403 (1985).

    Article  ADS  Google Scholar 

  9. H. Q. Lin and J. E. Hirsch, Two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping. Phys. Rev. B 35:3359 (1987).

    Article  ADS  Google Scholar 

  10. D. Poilblanc and T. M. Rice, Charged solitons in the Hartree–Fock approximation to the large-U Hubbard model. Phys. Rev. B 39:9749 (1989).

    Article  ADS  Google Scholar 

  11. J. Zaanen and O. Gunnarsson, Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40:7391 (1989).

    Article  ADS  Google Scholar 

  12. J. A. Verges, E. Louis, P. S. Lomdahl, F. Guinea, and A. R. Bishop, Holes and magnetic textures in the two-dimensional Hubbard model. Phys. Rev. B 43:6099 (1991).

    Article  ADS  Google Scholar 

  13. V. Bach, E. Lieb, and J. Solovej, Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76:3 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Bach and J. Poelchau, Hartree–Fock Gibbs states for the Hubbard model. Markov Processes Rel. Fields 2(1):225 (1996).

    MATH  MathSciNet  Google Scholar 

  15. E. Langmann and M. Wallin, Restricted path integral approach to the doped Hubbard model. Europhys. Lett. 37:219 (1997).

    Article  ADS  Google Scholar 

  16. E. Langmann and M. Wallin, Mean-field approach to antiferromagnetic domains in the doped Hubbard model. Phys. Rev. B 55:9439 (1997).

    Article  ADS  Google Scholar 

  17. W. P. Su, Interplay of d-wave superconductivity and antiferromagnetism in cuprate superconductors: Phase separation and pseudogap phase diagram. Mod. Phys. Lett. B 19:1295 (2005).

    Google Scholar 

  18. H. Taniguchi, Y. Morita, and Y. Hatsugai, Magnetism in the two-dimensional t-t′ Hubbard model: From low- to over-doping. Phys. Rev. B 72:134417 (2005).

    Article  ADS  Google Scholar 

  19. L. Arrachea, Itinerant ferromagnetism in the two-dimensional t-t′ Hubbard model. Phys. Rev. B 62:10033 (2000).

    Article  ADS  Google Scholar 

  20. B. Valenzuela, M. A. H. Vozmediano, and F. Guinea, Inhomogeneous structures in the t-t′ Hubbard model. Phys. Rev. B 62:11312 (2000).

    Article  ADS  Google Scholar 

  21. C. Honerkamp and M. Salmhofer, Temperature-flow renormalization group and the competition between superconductivity and ferromagnetism. Phys. Rev. B 64:184516 (2001).

    Article  ADS  Google Scholar 

  22. D. Penn, Stability theory of the magnetic phases for a simple model of the transition metals. Phys. Rev. 142:350 (1966).

    Article  ADS  Google Scholar 

  23. W. P. Su, Spin polarons in the two-dimensional Hubbard model: A numerical study. Phys. Rev. B 37:9904 (1988).

    Article  ADS  Google Scholar 

  24. A. Singh and H. Ghosh, Stability of the doped antiferromagnetic state of the t-t′ Hubbard model. Phys. Rev. B 65:134414 (2002).

    Article  ADS  Google Scholar 

  25. M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M. Schl¨ter, Model for low-energy electronic states probed by x-ray absorption ins high-T c cuprates. Phys. Rev. B 45:10032 (1992).

    Article  ADS  Google Scholar 

  26. J. C. Slater, Note on Hartree’s method. Phys. Rev. 35:210 (1930).

    Article  ADS  Google Scholar 

  27. P. B. Visscher, Phase separation instability in the Hubbard model. Phys. Rev. B 10:943 (1974).

    Article  ADS  Google Scholar 

  28. F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, A renormalized Hamiltonian approach to a resonant valence bond wave function. Supercond. Sci. Technol. 1:36 (1988).

    Article  ADS  Google Scholar 

  29. H. X. Huang, Y. Q. Li, and F. C. Zhang, Charge-ordered resonating bond states in doped cuprates. Phys. Rev. B 71:184514 (2005).

    Article  ADS  Google Scholar 

  30. Q. H. Wang, Z. D. Wang, Y. Chen, and F. C. Zhang, Unrestricted renormalized mean field theory of strongly correlated electron systems. Phys. Rev. B 73:092507 (2006).

    Article  ADS  Google Scholar 

  31. Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled $s$ band. Phys. Rev. 147:392 (1966).

    Article  ADS  Google Scholar 

  32. J. de Woul, A restricted Hartree–Fock study of the 2D Hubbard model. Master’s thesis, KTH, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Langmann.

Additional information

PACS: 71.10.Fd, 05.70.Fh, 75.50.Ee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langmann, E., Wallin, M. Mean Field Magnetic Phase Diagrams for the Two Dimensional tt′ — U Hubbard Model. J Stat Phys 127, 825–840 (2007). https://doi.org/10.1007/s10955-007-9308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9308-y

Keywords

Navigation