Skip to main content
Log in

Phase Transition of Triangulated Spherical Surfaces with Elastic Skeletons

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A first-order transition is numerically found in a spherical surface model with skeletons, which are linked to each other at junctions. The shape of the triangulated surfaces is maintained by skeletons, which have a one-dimensional bending elasticity characterized by the bending rigidity b, and the surfaces have no two-dimensional bending elasticity except at the junctions. The surfaces swell and become spherical at large b and collapse and crumple at small b. These two phases are separated from each other by the first-order transition. Although both of the surfaces and the skeleton are allowed to self-intersect and, hence, phantom, our results indicate a possible phase transition in biological or artificial membranes whose shape is maintained by cytoskeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Murase, T. Fujiwara, Y. Umehara, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritohie, and A. Kusumi, Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biol. J. 86:4075–4093 (2004).

    Google Scholar 

  2. S. Chaieb, V. K. Natrajan, and A. A. El-rahman, Glassy conformation in wrinkled membranes. Phys. Rev. Lett. 96:078101(1–4) (2006).

    Google Scholar 

  3. W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch 28c:693–703 (1973).

    Google Scholar 

  4. A. M. Polyakov, Fine structure of strings. Nucl. Phys. B 268:406–412 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Kleinert, The membrane properties of condensing strings. Phys. Lett. B 174:335–338 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Nelson, The statistical mechanics of membranes and interfaces. In Statistical Mechanics of Membranes and Surfaces, 2nd edn. (D. Nelson, T. Piran, and S. Weinberg eds.), World Scientific, 1–16 (2004).

  7. G. Gompper and M. Schick, Self-assembling amphiphilic systems. In Phase Transitions and Critical Phenomena 16 (C. Domb and J. L. Lebowitz eds.), Academic Press, 1–176 (1994).

  8. M. Bowick and A. Travesset, The statistical mechanics of membranes. Phys. Rep. 344:255–308 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. S. K. Boey, D. H. Boal, and D. E. Disher, Simulations of the erythrocyte cytoskeleton at large deformation I: Microscopic model. Biophys. J. 75:1573–1583 (1998); D. E. Disher, D. H. Boal, and S. K. Boey, Simulations of the erythrocyte cytoskeleton at large deformation II: Micropipette aspiration. Biophys. J. 75:1584–1597 (1998).

    Article  ADS  Google Scholar 

  10. H. Koibuchi, First-order transition of a compartmentalized surface model for fluid membranes, cond-mat/0607224.

  11. L. Peliti and S. Leibler, Effects of thermal fluctuations on systems with small surface tension. Phys. Rev. Lett. 54(15):1690–1693 (1985).

    Article  ADS  Google Scholar 

  12. F. David and E. Guitter, Crumpling transition in elastic membranes. Europhys. Lett. 5(8): 709–713 (1988).

    ADS  Google Scholar 

  13. M. Paczuski, M. Kardar, and D. R. Nelson, Landau theory of the crumpling transition. Phys. Rev. Lett. 60:2638–2640 (1988).

    Article  ADS  Google Scholar 

  14. Y. Kantor and D. R. Nelson, Phase transitions in flexible polymeric surfaces. Phys. Rev. A 36:4020–4032 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  15. J.-P. Kownacki and H. T. Diep, First-order transition of tethered membranes in three-dimensional space. Phys. Rev. E 66:066105(1–5) (2002).

    Google Scholar 

  16. H. Koibuchi and T. Kuwahata, First-order phase transition in the tethered surface model on a sphere. Phys. Rev. E 72:026124(1–6) (2005).

    Google Scholar 

  17. I. Endo and H. Koibuchi, First-order phase transition of the tethered membrane model on spherical surfaces. Nucl. Phys. B 732(FS):426–443 (2006).

    Article  ADS  MATH  Google Scholar 

  18. A. Baumgartner and J. S. Ho, Crumpling of fluid vesicles. Phys. Rev. A 41:5747–5750 (1990).

    Article  ADS  Google Scholar 

  19. S. M. Catterall, J. B. Kogut and R. L. Renken, Numerical study of field theories coupled to 2D quantum gravity. Nucl. Phys. Proc. Suppl. B 25:69–86 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Ambjorn, A. Irback, J. Jurkiewicz and B. Petersson, The theory of random surface with extrinsic curvature. Nucl. Phys. B 393:571–600 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Koibuchi, Grand Canonical simulations of string tension in elastic surface model. Eur. Phys. J. B 45:377–383 (2005).

    Article  ADS  Google Scholar 

  22. M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation Vol. 8, No. 1, January (1998) pp. 3–30.

    Article  MATH  Google Scholar 

  23. W. Janke, Histograms and All That, in: Computer Simulations of Surfaces and Interfaces, NATO Science Series, II. Mathematics, Physics and Chemistry–Vol. 114, Proceedings of the NATO Advanced Study Institute, Albena, Bulgaria, 9–20 September 2002, edited by B. Dunweg, D. P. Landau, and A. I. Milchev (Kluwer, Dordrecht, 2003), pp. 137–157.

    Google Scholar 

  24. B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new approach to simulate first-order phase transitions. Phys. Rev. Lett. 68:9–12 (1992).

    Article  ADS  Google Scholar 

  25. B. A. Berg and T. Celik, A new approach to spin-glass simulations. Phys. Rev. Lett. 69:2292–2295 (1992).

    Article  ADS  Google Scholar 

  26. H. Koibuchi, Phase transition of a skeleton model for surfaces, ICIC2006 Proceedings Part 3, Springer Lecture Notes in Bioinformatics LNBI 4115:223–229 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, H. Phase Transition of Triangulated Spherical Surfaces with Elastic Skeletons. J Stat Phys 127, 457–470 (2007). https://doi.org/10.1007/s10955-007-9287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9287-z

Keywords

Navigation