Skip to main content
Log in

Topological Entanglement Entropy from the Holographic Partition Function

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the entropy of chiral 2+01-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and $p+ip$ superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer ‘ground state degeneracy’ which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424:443 (1994) [arXiv:hep-th/9403108].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech. 0406:P002 (2004) [arXiv:hep-th/0405152].

    MathSciNet  Google Scholar 

  3. A. Kitaev and J. Preskill, Phys. Rev. Lett. 96:110404 (2006) [arXiv:hep-th/0510092].

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Levin and X. G. Wen, Phys. Rev. Lett. 96:110405 (2006) [arXiv:cond-mat/0510613].

    Article  ADS  Google Scholar 

  5. E. Witten, Comm. Math. Phys. 121:351 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. V. F. R. Jones, Bull. Am. Math. Soc. 12:103 (1985).

    Article  MATH  Google Scholar 

  7. A. Y. Kitaev, Ann. Phys. 303:2 (2003). [arXiv:quant-ph/9707021]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. S. Das Sarma, M. Freedman and C. Nayak, Physics Today 59:32 (2006) and references therein.

    Article  Google Scholar 

  9. H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem. Phys. Lett. B 600:142 (2004) [arXiv:hep-th/0405111].

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Andrei and C. Destri, Phys. Rev. Lett. 52:364 (1984).

    Article  ADS  Google Scholar 

  11. A. M. Tsvelik and P. B. Wiegmann, Z. Phys. B 54:201 (1985); J. Stat. Phys. 38:125 (1985).

    Article  ADS  Google Scholar 

  12. J. Cardy, Nucl. Phys. B 324:581 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 67:161 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. E. P. Verlinde, “Fusion Rules And Modular Transformations In 2-d Conformal Field Theory,” Nucl. Phys. B 300:360 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Friedan and A. Konechny, “On the boundary entropy of one-dimensional quantum systems at low temperature,” Phys. Rev. Lett. 93:030402 (2004) [arXiv:hep-th/0312197].

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Moore and N. Read, Nucl. Phys. B 360:362 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  17. N. Read and E. Rezayi, Phys. Rev. B 59:8084 (1999) [arXiv: cond-mat/9809384].

    Article  ADS  Google Scholar 

  18. M. Greiter, X. G. Wen and F. Wilczek, Nucl. Phys. B 374:567 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. N. Read and D. Green, Phys. Rev. B 61:10267 (2000) [arXiv:cond-mat/9906453].

    Article  ADS  Google Scholar 

  20. P. Fendley,M. P. A. Fisher and C. Nayak, to appear inPhys. Rev. B, 75:045317 (2007) [arXiv:condmat/0607431].

  21. P. Fendley, M. P. A. Fisher and C. Nayak, “Edge states and tunneling of non-Abelian quasiparticles in the nu=5/2 quantum Hall state and p+ip superconductors” to appear in Phys. Rev. B, arXiv:cond-mat/0607431

  22. C. Nayak and F. Wilczek, Nucl. Phys. B 479:529 (1996) [arXiv:cond-mat/9605145].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. N. Read and E. Rezayi, Phys. Rev. B 54:16864 (1996) [arXiv:cond-mat/9609079].

    Article  ADS  Google Scholar 

  24. D. A. Ivanov, Phys. Rev. Lett. 86:268 (2001) [arXiv:cond-mat/0005069].

    Article  ADS  Google Scholar 

  25. P. Ginsparg, “Applied conformal field theory,” Les Houches lectures, published in Fields, Strings, and Critical Phenomena, ed. by E. Brézin and J. Zinn-Justin, North Holland (1989) [arXiv:hep-th/9108028].

  26. H. Blöte, J. Cardy and M. Nightingale, Phys. Rev. Lett. 56:742 (1986); I. Affleck, Phys. Rev. Lett. 56:746 (1986).

    Article  ADS  Google Scholar 

  27. J. L. Cardy, “Conformal Invariance And Surface Critical Behavior,” Nucl. Phys. B 240:514 (1984).

    Article  ADS  Google Scholar 

  28. J. L. Cardy, “Effect Of Boundary Conditions On The Operator Content Of Two-Dimensional Conformally Invariant Theories,” Nucl. Phys. B 275:200 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  29. X. G. Wen, Phys. Rev. B 41:12838 (1990); 43:11025 (1991); 44:5708 (1991).

    Article  ADS  Google Scholar 

  30. C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46:15233 (1992).

    Article  ADS  Google Scholar 

  31. E. Wong and I. Affleck, “Tunneling in quantum wires: A Boundary conformal field theory approach,” Nucl. Phys. B 417:403 (1994) [arXiv:cond-mat/9311040].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. P. Fendley, H. Saleur and N. P. Warner, “Exact Solution Of A Massless Scalar Field With A Relevant Boundary Interaction,” Nucl. Phys. B 430:577 (1994) [arXiv:hep-th/9406125].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. E. Fradkin and J. E. Moore, “Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum,” Phys. Rev. Lett. 97:050404 (2006) [arXiv:cond-mat/0605683].

    Article  ADS  Google Scholar 

  34. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96:181602 (2006) [arXiv:hep-th/0603001]; JHEP 0608:045 (2006) [arXiv:hep-th/0605073].

    Article  ADS  MathSciNet  Google Scholar 

  35. D. V. Fursaev, “Entanglement entropy in critical phenomena and analogue models of quantum gravity,” Phys. Rev. D 73:124025 (2006) [arXiv:hep-th/0602134]; JHEP 0609:018 (2006) [arXiv:hep-th/0606184].

    Article  ADS  MathSciNet  Google Scholar 

  36. J. L. Cardy, “Operator Content Of Two-Dimensional Conformally Invariant Theories,” Nucl. Phys. B 270:186 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. E. Witten, “Some Properties Of The (Psi-Bar Psi)**2 Model In Two-Dimensions,” Nucl. Phys. B 142:285 (1978).

    Article  ADS  Google Scholar 

  38. P. Fendley and H. Saleur, “BPS kinks in the Gross-Neveu model,” Phys. Rev. D 65:025001 (2002) [arXiv:hep-th/0105148].

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Milovanović and N. Read, Phys. Rev. B 53:13559 (1996) [arXiv:cond-mat/9602113].

    Article  ADS  Google Scholar 

  40. E. Fradkin, C. Nayak, A. M. Tsvelik and F. Wilczek, Nucl. Phys. B 516:704 (1998) [arXiv:cond-mat/9711087].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. D. Gepner and E. Witten, “STRING THEORY ON GROUP MANIFOLDS,” Nucl. Phys. B 278:493 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  42. W. Boucher, D. Friedan and A. Kent, “Determinant Formulae And Unitarity For The N=2 Superconformal Algebras In Two-Dimensions Or Exact Results On String Compactification,” Phys. Lett. B 172:316 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. B. Zamolodchikov and V. A. Fateev, “DISORDER FIELDS IN TWO-DIMENSIONAL CONFORMAL QUANTUM FIELD THEORY AND N=2 EXTENDED SUPERSYMMETRY,” Sov. Phys. JETP 63:913 (1986) [Zh. Eksp. Teor. Fiz. 90:1553 (1986)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fendley, P., Fisher, M.P.A. & Nayak, C. Topological Entanglement Entropy from the Holographic Partition Function. J Stat Phys 126, 1111–1144 (2007). https://doi.org/10.1007/s10955-006-9275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9275-8

Keywords

Navigation