Skip to main content
Log in

Finite Time Approach to Equilibrium in a Fractional Brownian Velocity Field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the solution of the equation r(t) = W(r(t)), r(0) = r 0 > 0 where W(⋅) is a fractional Brownian motion (f.B.m.) with the Hurst exponent α∈ (0,1). We show that for almost all realizations of W(⋅) the trajectory reaches in finite time the nearest equilibrium point (i.e. zero of the f.B.m.) either to the right or to the left of r 0, depending on whether W(r 0) is positive or not. After reaching the equilibrium the trajectory stays in it forever. The problem is motivated by studying the separation between two particles in a Gaussian velocity field which satisfies a local self-similarity hypothesis. In contrast to the case when the forcing term is a Brownian motion (then an analogous statement is a consequence of the Markov property of the process) we show our result using as the principal tools the properties of time reversibility of the law of the f.B.m., see Lemma 2.4 below, and the small ball estimate of Molchan, Commun. Math. Phys. 205 (1999) 97–111.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Billingsley, Convergence of Probability Measures, 2nd ed. (Wiley & Sons, 1999).

  2. M. Chaves, P. Horvai, K. Gawedzki, A. Kupiainen and M. Vergassola, Lagrangian dispersion in Gaussian self-similar velocity ensembles, J. Stat. Phys. 113:643–692 (2003).

    Google Scholar 

  3. L. K. Chung, A Course in Probability Theory (Harcourt, Brace & World Inc., 1968).

  4. L. Decreusefond and A. S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal. 10:177–214 (1998).

    Google Scholar 

  5. U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

  6. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus (Springer, 1991).

  7. R. Kraichnan, Diffusion in a random velocity field, Phys. Fluids 13:22–31 (1970).

    Google Scholar 

  8. N. L. Lanjri-Zadi and D. Nualart, Smoothness of the law of the supremum of the fractional Brownian motion, Electr. Comm. Prob. 8:102–111 (2003).

    Google Scholar 

  9. G. M. Molchan, Maximum of a fractional Brownian motion: Probabilities of small values, Commun. Math. Phys. 205:97–111 (1999).

    Google Scholar 

  10. A. S. Monin and A. M. Yaglom, Statistical Hydrodynamics, v. II (in Russian) (Nauka, Moscow, 1967).

  11. Y. A. Rozanov, Stationary Random Processes (Holden-Day, 1967).

  12. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussan Random Processes. Stochastic Models with Infinite Variance (Chapman & Hall, New York, London, 1994).

  13. J. Vives and D. Nualart, Continuité absolute de la loi du maximum d’un processus continu, C.R. Acad. Sci. Paris 307:349–354 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Komorowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvai, P., Komorowski, T. & Wehr, J. Finite Time Approach to Equilibrium in a Fractional Brownian Velocity Field. J Stat Phys 127, 553–565 (2007). https://doi.org/10.1007/s10955-006-9270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9270-0

Keywords

Navigation