Abstract
Irrespective of the nature of the modeled conservation laws, we establish first the microscopic interface continuity conditions for Lattice Boltzmann (LB) multiple-relaxation time, link-wise collision operators with discontinuous components (equilibrium functions and/or relaxation parameters). Effective macroscopic continuity conditions are derived for a planar implicit interface between two immiscible fluids, described by the simple two phase hydrodynamic model, and for an implicit interface boundary between two heterogeneous and anisotropic, variably saturated soils, described by Richard’s equation. Comparing the effective macroscopic conditions to the physical ones, we show that the range of the accessible parameters is restricted, e.g. a variation of fluid densities or a heterogeneity of the anisotropic soil properties. When the interface is explicitly tracked, the interface collision components are derived from the leading order continuity conditions. Among particular interface solutions, a harmonic mean value is found to be an exact LB solution, both for the interface kinematic viscosity and for the interface vertical hydraulic conductivity function. We construct simple problems with the explicit and implicit interfaces, matched exactly by the LB hydrodynamic and/or advection-diffusion schemes with the aid of special solutions for free collision parameters.
Similar content being viewed by others
References
M. Bakker and K. Hemker, Analytic solutions for groundwater whirls in box-shaped, layered anisotropic aquifers, Adv. Water Resour. 27:1075–1086 (2004).
M. Bouzidi, M. Firdaouss and P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids 13:3452–3459 (2001).
R.H. Brooks and A.T. Corey, Hydraulic properties of porous media. Hydrol. Paper No. 3, Colorado State University, Fort Collins, Colo. 1964.
J.M. Buick and C.A. Greated., Gravity in a lattice Boltzmann model. Phys. Rev. E 61:5307–5320 (2000).
J.M. Buick and C. A. Greated, Lattice-Boltzmann modeling of interfacial gravity waves. Phys. Fluids 10(6):1490–1511 (1998).
M. Celia, E. Bouloutas and R. Zabra, A general Mass-Conservative Numerical Solution for the Unsaturated Flow Equation. Water Resour. Res. 26:1483–1496 (1990).
S. Chen and G.D. Doolen, Lattice Boltzmann method for fluid flows. Ann. Rev. J. Fluid Mechanics 30:329–364 (1998).
D.A. Edwards, H. Brenner and D.T. Wasan, Interfacial transport process and rheology. Butterworth-Heinemann Series in Chemical Engineering, 1991.
U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau and J.P. Rivet, Lattice gas hydrodynamics in two and three dimensions Complex Sys. 1:649–707 (1987).
E. Guyon, J.-P. Hulin and L. Petit, Hydrodynamique physique, Inter Editions/Editions du CNRS, Paris, 1991.
X. He and L.S. Luo, Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation. J. Stat. Phys. 88:927–945 (1997).
F. J. Higuera and J. Jimenez. Boltzmann approach to lattice gas simulations. Europhys. Lett., 9:663–668, 1989.
D. d’Humières, Generalized Lattice-Boltzmann Equations. AIAA Rarefied Gas Dynamics: Theory and Simulations. Progress in Astronautics and Aeronautics 59:450–548 (1992).
D. d’Humières, M. Bouzidi and P. Lallemand, Thirteen-velocity three-dimen-sional lattice Boltzmann model, Phys. Rev. E 63:066702-1–7 (2001).
D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand and L.-S. Luo, Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360:437–451 (2002).
D. d’Humières and I. Ginzburg, Some analytical results about the stability of Lattice Boltzmann models, in preparation, 2006.
D. d’Humières and I. Ginzburg, Knudsen layers in Lattice Boltzmann modeling, in preparation, 2006.
I. Ginzbourg. Boundary conditions problems in lattice gas methods for single and multiple phases, PhD, University Paris VI, 1994.
I. Ginzbourg and P. M. Adler, Boundary flow condition analysis for the three-dimensional lattice Bolzmann model, J. Phys. II France 4:191–214 (1994).
GA95 I. Ginzbourg and P. Adler, Surface Tension Models with Different Viscosities, Transport Porous Media 20:37–76 (1995).
I. Ginzburg and K. Steiner, A free surface Lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids, Phil. Trans. R. Soc. Lond. A 360:453–466 (2002).
I. Ginzburg and K. Steiner, Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comp. Phys. 185:61–99 (2003).
I. Ginzburg and D. d’Humières, Multi-reflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68:066614-1-30 (2003).
I. Ginzburg, Equilibrium-type and Link-type Lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Resour. 28:1171–1195 (2005).
I. Ginzburg, Generic boundary conditions for Lattice Boltzmann models and their application to advection and anisotropic-dispersion equations. Adv. Water Resour. 28:1196–1216 (2005).
I. Ginzburg and J.-P. Carlier and C. Kao, Lattice Boltzmann approach to Richards’ equation, in: Computational methods in water resources. Proc. of the CMWR XV, Chapen Hill, USA, 2004, eds. C. T. Miller, Elsevier, pp. 583–597, 2004.
I. Ginzburg, Variably saturated flow described with the anisotropic Lattice Boltzmann methods. J. Comput. Fluids 35(8/9):831–848 (2006).available online:doi:10.1016/j.compfluid.2005.11.001
I. Ginzburg and D. d’Humières, Lattice Boltzmann and analytical solutions for flow process in anisotropic heterogeneous stratified aquifers, submitted to Advances in Water Resour., 2006.
A.K. Gunstensen, D.H. Rothmann, S. Zaleski and G. Zanetti, Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43:4320–4327 (1991).
Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65:066308-1-6 (2003).
D. Grunau, S. Chen and K. Eggert, A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A5 2557–2562 1993.
X. He, S. Chen and R. Zhang, A Lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 152:642–663 (1999).
HSZDS96 S. Hou, X. Shan, Q. Zou, G.D. Doolen and W.E. Soll, Evaluation of Two Lattice Boltzmann Models for Multiphase Flows. J. Comput. Phys. 138:695–713 (1996).
T. Inamuro, N. Konishi and F. Ogino, A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput. Phys. Commun. 129:32–45 (2000).
A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271:311–339 (1994).
D. Kehrwald, Numerical analysis of immiscible lattice BGK, PhD. diss, UNI Kaiserslautern, Germany, 2002.
C. Körner, M. Thies, T. Hoffmann, N. Thürey and U. Rüde, Lattice Boltzmann Model for Free Surface flow for modeling Foaming, J. Stat. Phys. 121:179–197 (2005).
P. Lallemand and L.-S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61:6546–6562 (2000).
semi98 F. Marinelli and D.S. Durnford, Semianalytical solution to Richards’ Equation for layered porous media. J. Irrigat. Drainage Eng. 124(6):290–299 (1998).
C.T. Miller, C. Abhishek, A.B. Sallerson, J.F. Prins and M. W. Farthing, A comparison of computational and algorithmic advances for solving Richards’ equation, “Computational methods in water resources”. C.T. Miller (ed.), Proc. of the CMWR XV, June 13–17, Chapel Hill, NC, USA, vol. 2, pp. 1131–1145, Elsevier, 2004.
Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513–522 (1976).
X. Nie, Y.-H. Qian, G.D. Doolen and S. Chen, Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability. Phys. Rev. E 58:6861–6864 (1998).
Y. Qian, D. d’Humières and P. Lallemand, Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17:479–484 (1992).
C. Pan, M. Hilpert and C.T. Miller, Lattice Boltzmann simulation of two-phase flow in porous media, Water Resour. Res. 40(1):W01501:1–14 (2004).
C. Pan, L. Luo and C.T. Miller, An evaluation of lattice Boltzmann schemes for porous media simulations, J. Comput. Fluids 35(8/9):898–909 (2006).available online:doi:10.1016/j.compfluid.2005.03.008
U. D’Ortona, D. Salin, M. Cieplak, R.B. Rybka and J.R. Banavar, Two-color nonlinear Boltzmann cellular automata: Surface tension and wetting, Phys. Rev. E 51:3718–3751 (1995).
D. Raabe, Overview of the lattice Boltzmann method for nano-and microscale fluid dynamics in matherial science and engineering, Model. Simul. Mater. Sci. Eng. 12:R13–R46 (2004).
L.O.E. dos Santos and P.C. Philippi, Lattice-gas model based on field mediators for immiscible fluids, Phys. Rev. E 65:046305-1-8 (2002).
X. Shan and G.D. Doolen, Multi-component lattice-Boltzmann model with interparticle interaction, J. Stat. Phys. 81(1/2):379–393 (1995).
X. Shan and G. Doolen, Diffusion in a multicomponent lattice Boltzmann equation model. Phys. Rev. E 54:3614–3620 (1996).
M.R. Swift, E. Orlandini, W.R. Osborn and J.M. Yeomans, Lattice Boltzmann simulation of liquid-gas and binary fluid systems, Phys. Rev. E 54:5041–5052 (1996).
D.H. Rothman and S. Zaleski, Lattice Gas Dynamics Automata - Simple Model for Complex Hydrodynamics, Cambridge University Press, ISBN: 0-521-55201-X, 1997.
P.J. Ross, Modeling soil water and solute transport-Fast, simplified numerical solutions Agronomy J. 95:1352–1361 (2003).
A. Tichonov and A. Samarsky, Equations of mathematical physics. Nauka, Moscow, 1977.
J. Tölke, Die Lattice Boltzmann Methode für Mehrphasenströmungen. PhD.diss LS Bauinformatik, TU, München, Germany, 2001.
J. Tölke, M. Krafczyk, M. Schulz and E. Rank, Lattice Boltzmann simulations of binary fluid flow through porous media, Phil. Trans. R. Soc. Lond. A 360:535–545 (2002).
H.-J. Vogel, J. Tölke, V. P. Schulz, M. Krafczyk and K. Roth, Comparison of Lattice-Boltzmann Model, a Full-Morphology Model, and a Pore Network Model for Determining Capillary Pressure-Saturation Relationships, Vadoze Zone J. 4:380–388 (2005).
X. Zhang, A.G. Bengough, L.K. Deeks, J.W. Crawford and I. M. Young, A lattice BGK model for advection and anisotropic dispersion equation. Adv. Water Resour. 25:1–8 (2002a).
X. Zhang, A.G. Bengough, L.K. Deeks, J.W. Crawford and I.M. Young, A novel three-dimensional lattice Boltzmann model for solute transport in variably saturated porous media, Water Resour. Res. 38:1–10 (2002b).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ginzburg, I. Lattice Boltzmann modeling with discontinuous collision components: Hydrodynamic and Advection-Diffusion Equations. J Stat Phys 126, 157–206 (2007). https://doi.org/10.1007/s10955-006-9234-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-006-9234-4