Skip to main content
Log in

Kraichnan Flow in a Square: An Example of Integrable Chaos

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Kraichnan flow provides an example of a random dynamical system accessible to an exact analysis. We study the evolution of the infinitesimal separation between two Lagrangian trajectories of the flow. Its long-time asymptotics is reflected in the large deviation regime of the statistics of stretching exponents. Whereas in the flow that is isotropic at small scales the distribution of such multiplicative large deviations is Gaussian, this does not have to be the case in the presence of an anisotropy. We analyze in detail the flow in a two-dimensional periodic square where the anisotropy generally persists at small scales. The calculation of the large deviation rate function of the stretching exponents reduces in this case to the study of the ground state energy of an integrable periodic Schrödinger operator of the Lamé type. The underlying integrability permits to explicitly exhibit the non-Gaussianity of the multiplicative large deviations and to analyze the time-scales at which the large deviation regime sets in. In particular, we indicate how the divergence of some of those time scales when the two Lyapunov exponents become close allows a discontinuity of the large deviation rate function in the parameters of the flow. The analysis of the two-dimensional anisotropic flow permits to identify the general scenario for the appearance of multiplicative large deviations together with the restrictions on its applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold, Random Dynamical Systems (Springer, Berlin 2003).

    Google Scholar 

  2. E. Balkovsky, G. Falkovich, and A. Fouxon, Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86:2790–2793 (2001).

    Article  ADS  Google Scholar 

  3. E. Balkovsky and A. Fouxon, Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60:4164–4174 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. H. Baxendale, The Lyapunov spectrum of a stochastic flow of diffeomorphisms, In L. Arnold and V. Wihstutz, Eds., Lyapunov Exponents, Bremen 1984, Lecture Notes in Math. vol. 1186 (Springer 1986), pp. 322–337.

  5. P. H. Baxendale and D. W. Stroock, Large deviations and stochastic flows of diffeomorphisms. Prob. Theor.& Rel. Fields 80:169–215 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bec, K. Gawędzki, and P. Horvai, Multifractal clustering in compressible flows. Phys. Rev. Lett. 92:224501–2240504 (2004).

    Article  ADS  Google Scholar 

  7. D. Bernard, K. Gawędzki, and A. Kupiainen, Slow modes in passive advection, J. Stat. Phys. 90:519–569 (1998).

    MATH  Google Scholar 

  8. F. Bonetto, G. Gallavotti, and G. Gentile, A fluctuation theorem in a random environment. mp_arc/06-139

  9. M. Chertkov, Polymer stretching by turbulence. Phys. Rev. Lett. 84:4761–4764 (2000).

    Article  ADS  Google Scholar 

  10. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Statistics of a passive scalar advected by a large-scale 2D velocity field: analytic solution. Phys. Rev. E 51:5609–5627 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassola, Small-scale turbulent dynamo. Phys. Rev. Lett. 83:4065–4068 (1999).

    Article  ADS  Google Scholar 

  12. M. Chertkov, I. Kolokolov, and M. Vergassola, Inverse versus direct cascades in turbulent advection. Phys. Rev. Lett. 80:512–515 (1998).

    Article  ADS  Google Scholar 

  13. P. Etingof and A. Kirillov, Jr., Representations of affine Lie algebras, parabolic differential equations and Lamé Functions. Duke Math. J. 74:585–614 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions III (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  15. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71:2401–2404 and 3616 (1993).

    Article  MATH  ADS  Google Scholar 

  16. G. Falkovich, K. Gawędzki, and M. Vergassola, Particles and fields in fluid turbulence, Rev. Mod. Phys. 73: 913–975 (2001)

    Article  ADS  Google Scholar 

  17. G. Gallavotti, Fluctuation patterns and conditional reversibility in nonequilibrium systems. Ann. Inst. H. Poincaré 70:429–443 (1999).

    MATH  MathSciNet  Google Scholar 

  18. G. Gallavotti and E. D. G. Cohen, Dynamical ensembles in non-equilibrium statistical mechanics. Phys. Rev. Lett. 74:2694–2697 (1995).

    Article  ADS  Google Scholar 

  19. K. Gawędzki, On multiplicative large deviations (unpublished).

  20. K. Gawędzki and F. Falceto, Elliptic Wess-Zumino-Witten model from elliptic Chern-Simons theory. Lett. Math. Phys. 38:155–175 (1996).

    Article  MathSciNet  Google Scholar 

  21. I. S. Gradstein and I. M. Rhyzik, Table of Integrals, Series, and Products, V th edition (Academic Press, New York, 1994).

    Google Scholar 

  22. P. Grassberger, R. Baddi, and A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors. J. Stat. Phys. 51:135–178 (1988).

    Article  MATH  Google Scholar 

  23. R. H. Kraichnan, Small scale structure of a scalar field convected by turbulence, Phys. Fluids 11:945–953 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Kunita, Stochastic Flows and Stochastic Differential Equations (Cambridge University Press, London, 1990).

    MATH  Google Scholar 

  25. Y. Le Jan, On isotropic Brownian motions. Zeit. Wahrschein. verw. Gebite 70:609–620 (1985).

    Article  MATH  Google Scholar 

  26. V. I. Oseledec, Multiplicative ergodic theorem: Characteristic Lyapunov exponents of dynamical systems. Trudy Moskov. Mat. Obšč 19:179–210 (1968).

    MathSciNet  Google Scholar 

  27. D. Ruelle, Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l'IHéS 50:275–320 (1979).

    Google Scholar 

  28. B. Shraiman and E. Siggia, Symmetry and scaling of turbulent mixing. Phys. Rev. Lett. 77:2463–2466 (1996).

    Article  ADS  Google Scholar 

  29. H. Volkmer, Lamé functions. To appear in Digital Library of Mathematical Functions, National Institute of Standards and Technology, Gaithersburg, MD, http://dlmf.nist.gov.

  30. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University Press, London, 1927).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Krzysztof Gawedzki is Member of C.N.R.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetrite, R., Delannoy, JY. & Gawedzki, K. Kraichnan Flow in a Square: An Example of Integrable Chaos. J Stat Phys 126, 1165–1200 (2007). https://doi.org/10.1007/s10955-006-9225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9225-5

Keywords

Navigation