Skip to main content
Log in

Non-Markovian Diffusion Over a Saddle with a Generalized Langevin Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The diffusion over a simple parabolic barrier is exactly solved with a non-Markovian Generalized Langevin Equation. For a short relaxation time, the problem is shown to be similar to a Markovian one, with a smaller effective friction. But for longer relaxation time, the average trajectory starts to oscillate and the system can have a very fast first passage over the barrier. For very long relaxation times, the solution tends to a zero-friction limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Langevin, Comptes Rendus de l'Académie des Sciences 146: 530 (1908).

    MATH  Google Scholar 

  2. O. Klein, Ark. Math. Astr. Fys. 16: 1 (1921).

    Google Scholar 

  3. H. A. Kramers, Physica VII, 4: 284 (1940).

    Article  MathSciNet  ADS  Google Scholar 

  4. G. W. Ford, M. Kac and P. Mazur, J. Math. Phys. 6: 504 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Mori, Prog. Theoret. Phys. 34: 399 (1965).

    Article  ADS  Google Scholar 

  6. M. Bixon and R. Zwanzig, J. Stat. Phys. 3: 245 (1971).

    Article  Google Scholar 

  7. R. Zwanzig, J. Stat. Phys. 9: 215 (1973).

    Article  Google Scholar 

  8. P. Grigolini and F. Marchesoni, Adv. Chem. Phys. 62: 29 (1985).

    MathSciNet  Google Scholar 

  9. S. Ayik, E. Suraud, J. Stryjewski and M. Belkacem, Zeit. Phys. A 337: 413 (1990).

    Google Scholar 

  10. D. Boilley, Y. Abe, S. Ayik and E. Suraud, Z. Phys. A 349: 119 (1994).

    Article  Google Scholar 

  11. P. Hänggi, P. Talkner and M. Borkovec, Rev. Mod. Phys. 62: 251 (1990).

    Article  ADS  Google Scholar 

  12. R. F. Grote and Hynes, J. Chem. Phys. 73: 2715 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  13. J. E. Straub, M. Borkovec and B. J. Berne, J. Chem. Phys. 83: 3172 (1985); J. Chem. Phys. 84: 1788 (1986).

    Article  ADS  Google Scholar 

  14. Y. Abe, D. Boilley, B. G. Giraud and T. Wada, Phys. Rev. E 61: 1125 (2000).

    Article  ADS  Google Scholar 

  15. D. Boilley, Y. Abe and J. D. Bao, Eur. Phys. J. A 18: 627 (2003).

    Article  ADS  Google Scholar 

  16. Y. Abe, Eur. Phys. J. A 13: 143 (2002); Y. Abe, D. Boilley, G. Kosenko, J. D. Bao, C. Shen, B. Giraud and T. Wada, Prog. Theor. Phys. Suppl. 146: 104 (2002); Y. Abe, D. Boilley, G. Kosenko and C. Shen, Acta Phys. Pol. B 34: 2091 (2003).

    Article  ADS  Google Scholar 

  17. W. J. Świątecki, K. Siwek-Wilczyńska and J. Wilczyński, Acta Phys. Pol. B 34: 2049 (2003); Phys. Rev. C 71: 014602 (2005).

    Google Scholar 

  18. R. Kubo, Rep. Prog. Phys. 29: 255 (1966).

    Article  MATH  ADS  Google Scholar 

  19. J. D. Bao and Y. Z. Zhuo, Phys. Rev. C 67: 064606 (2003).

    Article  ADS  Google Scholar 

  20. A. D. Vińales and M. A. Despósito, Phys. Rev. E 73: 016111 (2006).

    Article  ADS  Google Scholar 

  21. V. M. Kolomietz, S. V. Radionov and S. Shlomo, Phys. Rev. C 64: 054302 (2001); V. M. Kolomietz and S. Shlomo, Phys. Rep. 390: 133 (2004).

    Article  ADS  Google Scholar 

  22. D. Boilley, E. Suraud, Y. Abe and S. Ayik, Nucl. Phys. A556: 67 (1993).

    ADS  Google Scholar 

  23. M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17: 323 (1945).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36: 823 (1930).

    Article  MATH  ADS  Google Scholar 

  25. S. Chandrasekhar, Rev. Mod. Phys. 15: 1 (1943).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. W. Cassing and W. Nörenberg, Nucl. Phys. A 401: 467 (1983).

    Article  ADS  Google Scholar 

  27. G. Kosenko, C. Shen and Y. Abe, J. Nucl. Radiochem. Sci. 3: 19 (2002); C. Shen, G. Kosenko and Y. Abe, Phys. Rev. C 66: 061602(R) (2002).

    Google Scholar 

  28. S. Arrhenius, Z. Phys. Chem (Leipzig) 4: 226 (1889).

    Google Scholar 

  29. Y. Abe, S. Ayik, P.-G. Reinhard and E. Suraud, Phys. Rep. 275: 49 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  30. J. D. Bao and D. Boilley, Nucl. Phys. A 707: 47 (2002).

    Article  ADS  Google Scholar 

  31. H. Hofmann, Phys. Rep. 284: 137 (1997); C. Rummel and H. Hofmann, Nucl. Phys A 727: 24 (2003).

    Article  ADS  Google Scholar 

  32. N. Takigawa, S. Ayik, K. Washiyama and S. Kimura, Phys. Rev. C 69: 054605 (2004).

    Article  ADS  Google Scholar 

  33. S. Ayik, B. Yilmaz, A. Gokalp, O. Yilmaz and N. Takigawa, Phys. Rev. C 71: 054611 (2005).

    Article  ADS  Google Scholar 

  34. S. Ayik and D. Boilley, Phys. Lett. B 276: 263; Phys. Lett. B 284: 482E (1992).

    Article  ADS  Google Scholar 

  35. D. Boilley, B. Jurado and C. Schmitt, Phys. Rev. E 70: 056129 (2004).

    Article  ADS  Google Scholar 

  36. J. H. Weiner, Phys Rev. 169: 570 (1968); J. H. Weiner and Y. Partom, Phys Rev. 187: 1134 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Matsumoto and M. Yoshimura, Phys. Rev. A 63: 012104 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Thuillier, Cours de Mathématiques supérieures, Vol 4, pp. 171–174 (Paris, Masson, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Boilley.

Additional information

PACS: 02.50.EY, 05.40.−a, 25.70.Jj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boilley, D., Lallouet, Y. Non-Markovian Diffusion Over a Saddle with a Generalized Langevin Equation. J Stat Phys 125, 473–489 (2006). https://doi.org/10.1007/s10955-006-9197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9197-5

Keywords

Navigation