Skip to main content
Log in

On the Dynamics of the Glass Transition on Bethe Lattices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Glauber dynamics of disordered spin models with multi-spin interactions on sparse random graphs (Bethe lattices) is investigated. Such models undergo a dynamical glass transition upon decreasing the temperature or increasing the degree of constrainedness. Our analysis is based upon a detailed study of large scale rearrangements which control the slow dynamics of the system close to the dynamical transition. Particular attention is devoted to the neighborhood of a zero temperature tricritical point. Both the approach and several key results are conjectured to be valid in a considerably more general context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mézard and G. Parisi, Eur. Phys. J. B 20:217 (2001).

    Article  ADS  Google Scholar 

  2. S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Europhys. Lett. 55:465 (2001).

    Article  ADS  Google Scholar 

  3. S. Franz and G. Parisi, J. Phys. I (France) 5:1401 (1995).

    Article  Google Scholar 

  4. G. Semerjian, L. F. Cugliandolo, and A. Montanari, J. Stat. Phys. 115:493 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  5. F. Ritort and P. Sollich, Adv. Phys. 52:219 (2003).

    Article  ADS  Google Scholar 

  6. A. Montanari and G. Semerjian, Large Scale Rearrangements in Kinetically Constrained Models, in preparation.

  7. T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36:5388 (1987).

    Article  ADS  Google Scholar 

  8. T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. A 35:3072 (1987).

    Article  ADS  Google Scholar 

  9. W. Götze and L. Sjögren, Rep. Prog. Phys. 55:241 (1992).

    Article  Google Scholar 

  10. J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mézard, Physica A 226:243 (1996).

    Article  ADS  Google Scholar 

  11. J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mézard, Out of equilibrium dynamics in spin-glasses and other glassy system, in Spin Glasses and Random Fields, A. P. Young ed., (World Scientific, Singapore, 1997).

  12. C. Donati, S. C. Glotzer, and P. H. Poole, Phys. Rev. Lett. 82:5064 (1999).

    Article  ADS  Google Scholar 

  13. C. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzer, Nature 399:246 (1999).

    Article  ADS  Google Scholar 

  14. G. Biroli and J.-P. Bouchaud, Europhys. Lett. 67:21 (2004).

    Article  ADS  Google Scholar 

  15. S. Franz and G. Parisi, J. Phys: Condens. Matter 12:6335 (2000).

    Article  ADS  Google Scholar 

  16. C. Donati, S. Franz, S. C. Glotzer and G. Parisi, J. Non-Cryst. Sol. 307–310:215 (2002).

    Article  Google Scholar 

  17. J.-P. Bouchaud, cond-mat/0408617.

  18. B. I. Halperin, Phys. Rev. B 8:4437 (1973).

    Article  ADS  Google Scholar 

  19. A. Crisanti and H.-J. Sommers, Z. Phys. B 87:341 (1992).

    Article  ADS  Google Scholar 

  20. A. Crisanti, H. Horner, and H.-J. Sommers, Z. Phys. B 92:257 (1993).

    Article  ADS  Google Scholar 

  21. L. F. Cugliandolo, Dynamics of glassy systems, in Slow Relaxations and Non-equilibrium Dynamics in Condensed Matter, J.-L. Barrat et al. eds. (Springer, Berlin, 2003).

  22. J. Kurchan, G. Parisi, and M. A. Virasoro, J. Phys. I (France) 3:1819 (1993).

    Article  Google Scholar 

  23. A. Cavagna, I. Giardina, and G. Parisi, Phys. Rev. B 57:11251 (1998).

    Article  ADS  Google Scholar 

  24. W. Kob, Supercooled liquids, the glass transition, and computer simulations, in Slow Relaxations and Non-equilibrium Dynamics in Condensed Matter, J.-L. Barrat et al. eds. (Springer, Berlin, 2003).

  25. A. Montanari and G. Semerjian, Phys. Rev. Lett. 94:247201 (2005).

    Article  ADS  Google Scholar 

  26. N. Creignou and H. Daudé, Discrete Appl. Math. 96–97:41 (1999).

    Article  Google Scholar 

  27. F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Phys. Rev. E 63:026702 (2001).

    Article  ADS  Google Scholar 

  28. B. Bollobas, Random Graphs, 2nd Ed., (Cambridge University Press, Cambridge, 2001).

  29. E. Gardner, Nucl. Phys. B257 [FS14]:747 (1985).

    Article  ADS  Google Scholar 

  30. M. Mézard, F. Ricci-Tersenghi, and R. Zecchina, J. Stat. Phys. 111:505 (2003).

    Article  MATH  Google Scholar 

  31. S. Cocco, O. Dubois, J. Mandler, and R. Monasson, Phys. Rev. Lett. 90:047205 (2003).

    Article  ADS  Google Scholar 

  32. B. Pittel, J. Spencer, and N. Wormald, J. Comb. Theory B 67:111 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Semerjian and M. Weigt, J. Phys. A 37:5525 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. J. P. L. Hatchett, I. Pérez Castillo, A. C. C. Coolen, and N.S. Skantzos, cond-mat/0504313.

  35. (Oxford University Press, Oxford, 1989).

  36. F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, IEEE Trans. Inform. Theory 47:498 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  37. J.-P. Bouchaud and G. Biroli, J. Chem. Phys. 121:7347 (2004).

    Article  ADS  Google Scholar 

  38. A. Montanari and F. Ricci-Tersenghi, Phys. Rev. Lett. 90:017203 (2003).

    Article  ADS  Google Scholar 

  39. A. Montanari and F. Ricci-Tersenghi, Phys. Rev. B 68:224429 (2003).

    Article  ADS  Google Scholar 

  40. G. Parisi, cond-mat/0211608, cond-mat/0208070.

  41. M. Mézard and A. Montanari, Reconstruction on trees and spin glass transition, cond-mat/0512295.

  42. D. Aldous and J. A. Fill, Reversible Markov Chains and Random Walks on Graphs, book in preparation. Draft available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html

  43. T. P. Hayes and A. Sinclair, “A general lower bound for mixing of single site dynamics on graphs,” to appear in FOCS 2005.

  44. M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz, Rand. Struct. Alg. 24:461 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  45. N. Berger, C. Kenyon, E. Mossel, and Y. Peres, Prob. Theory Rel. Fields 131(3):311–340 (2005).

    Google Scholar 

  46. C. L. Henley, Phys. Rev. B 33:7675 (1986).

    Article  ADS  Google Scholar 

  47. J. C. Anglès d’Auriac, M. Preissmannd, and A. Sebö, Math. Comput. Model. 26:1 (1997).

    Google Scholar 

  48. C. L. Henley, Phys. Rev. Lett. 54:2030 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  49. R. Rammal and A. Benoit, Phys. Rev. Lett. 55:649–652 (1985).

    Article  ADS  Google Scholar 

  50. T. Schaefer, in Proceedings of the 10th Annual ACM Symposium on the Theory of Computing, San Diego, 216 (1978).

  51. M. Mézard, G. Parisi, and R. Zecchina, Science 297:812 (2002).

    Article  ADS  Google Scholar 

  52. R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, Phys. Rev. Lett. 89:268701 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

  54. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17:10 (1975).

    Article  ADS  Google Scholar 

  55. K. Athreya and P. Ney, Branching Processes (Springer-Verlag, New York, 1972).

  56. S. Cocco, R. Monasson, A. Montanari, and G. Semerjian, Approximate analysis of search algorithms with ‘physical’ methods, in Computational Complexity and Statistical Physics, A. Percus, G. Istrate and C. Moore eds. (Oxford University Press, Oxford, 2006).

  57. M. Vogel, B. Doliwa, A. Heuer, and S. C. Glotzer, J. Chem. Phys. 120:4404 (2004).

    Article  ADS  Google Scholar 

  58. S. C. Glotzer, J. Non-Cryst. Solids 274:342 (2000).

    Article  ADS  Google Scholar 

  59. J. Diaz, J. Petit, and M. Serna, ACM Comput. Surv. 34:313 (2002).

    Article  Google Scholar 

  60. M. Yannakakis, J. ACM 32:950 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  61. T. Lengauer, SIAM J. Alg. Disc. Meth. 3:99 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  62. R. B. Stinchcombe, Dilute magnetism, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz eds. (Academic, New York, 1983), Vol. 7.

  63. G. Biroli, M. Sellito, and C. Toninelli, Europhys. Lett. 69:496 (2005).

    Article  ADS  Google Scholar 

  64. H. Zhou, Phys. Rev. Lett. 94:217203 (2005).

    Article  ADS  Google Scholar 

  65. H. Zhou, New J. Phys. 7:123 (2005).

    Article  ADS  Google Scholar 

  66. M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, IEEE Trans. Inform. Theory 47:569–584 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  67. C. Méasson, A. Montanari, and R. Urbanke, cs.IT/0506083.

  68. H. S. Wilf, Generatingfunctionology (Academic Press, San Diego, 1990).

  69. A. M. Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, R. L. Graham, M. Groetschel, and L. Lovasz, eds. (The MIT Press, Cambridge, 1995), vol 2.

  70. P. Flajolet and R. Sedgewick, Analytic Combinatorics, book in preparation. Draft available at http://algo.inria.fr/flajolet/Publications/books.html

  71. M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations (Cambridge University Press, Cambridge, 1990).

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS Numbers:75.50.Lk (Spin glasses), 64.70.Pf (Glass transitions), 89.20.Ff (Computer science

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanari, A., Semerjian, G. On the Dynamics of the Glass Transition on Bethe Lattices. J Stat Phys 124, 103–189 (2006). https://doi.org/10.1007/s10955-006-9103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9103-1

Keywords

Navigation