Journal of Statistical Physics

, Volume 123, Issue 2, pp 301–313 | Cite as

Violation of the Fluctuation-Dissipation Theorem and Heating Effects in the Time-Dependent Kondo Model

Article

Abstract

The fluctuation-dissipation theorem (FDT) plays a fundamental role in understanding quantum many-body problems. However, its applicability is limited to equilibrium systems and it does in general not hold in nonequilibrium situations. This violation of the FDT is an important tool for studying nonequilibrium physics. In this paper we present results for the violation of the FDT in the Kondo model where the impurity spin is frozen for all negative times, and set free to relax at positive times. We derive exact analytical results at the Toulouse point, and results within a controlled approximation in the Kondo limit, which allow us to study the FDT violation on all time scales. A measure of the FDT violation is provided by the effective temperature, which shows initial heating effects after switching on the perturbation, and then exponential cooling to zero temperature as the Kondo system reaches equilibrium.

Key words

Fluctuation-dissipation theorem Strongly-correlated electrons Kondo problem Non-equilibrium many-body systems. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Callen and T. A. Welton, Phys. Rev. 83:34–40 (1951).Google Scholar
  2. 2.
    K. H. Fisher and J. A. Hertz, Spin Glasses (Cambridge Univ. Press, 1991).Google Scholar
  3. 3.
    P. Calabrese and A. Gambassi, J. Phys. A: Math. Gen. 38:R133–R193 (2005).Google Scholar
  4. 4.
    L. F. Cugliandolo and G. Lozano, Phys. Rev. B 59:915 (1999).Google Scholar
  5. 5.
    G. Biroli and O. Parcollet, Phys. Rev. B 65:094414 (2002).Google Scholar
  6. 6.
    L. F. Cugliandolo, D. R. Grempel, G. Lozano, H. Lozza, and C. A. da Silva Santos. Phys. Rev. B 66:014444 (2002).Google Scholar
  7. 7.
    L. F. Cugliandolo, D. R. Grempel, G. Lozano and H. Lozza, Phys. Rev. B 70:024422 (2004).Google Scholar
  8. 8.
    F. Iglói and H. Rieger, Phys. Rev. Lett. 85:3233 (2000).Google Scholar
  9. 9.
    P. Calabrese and J. Cardy, JSTAT 0504:P010 (2005).Google Scholar
  10. 10.
    N. Pottier and A. Mauger, Physica A 282:77–107 (2000).Google Scholar
  11. 11.
    D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Nature (London) 391:156–159 (1998); S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281:540 (1998); J. Schmid, J. Weis, K. Eberl, and K. von Klitzing, Physica B 258:182–185 (1998).Google Scholar
  12. 12.
    P. Nordlander, M. Pustilnik, Y. Meir, N. S. Wingreen, and D. C. Langreth, Phys. Rev. Lett. 83:808–811 (1999).Google Scholar
  13. 13.
    D. Lobaskin and S. Kehrein, Phys. Rev. B 71:193303 (2005).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, Sect. 124–126 (Pergamon Press, 3rd ed., 1980).Google Scholar
  15. 15.
    R. Kubo, Can. J. Phys. 34:1274 (1956); R. Kubo, J. Phys. Soc. Japan 12:570 (1957); R. Kubo, J. Phys. Soc. Japan 17:975 (1962).Google Scholar
  16. 16.
    G. Toulouse, C. R. Acad. Sci. Paris 268:1200 (1969).Google Scholar
  17. 17.
    L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55:3898–3914 (1997).Google Scholar
  18. 18.
    F. Lesage and H. Saleur, Phys. Rev. Lett. 80:4370–4373 (1998).Google Scholar
  19. 19.
    P. Calabrese and A. Gambassi, J. Stat. Mech. P07013 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Theoretische Physik III – Elektronische Korrelationen und MagnetismusUniversität AugsburgAugsburgGermany

Personalised recommendations