Skip to main content
Log in

Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a 2D- and 3D-lattice Boltzmann model for the treatment of free surface flows including gas diffusion. Interface advection and related boundary conditions are based on the idea of the lattice Boltzmann equation. The fluid dynamic boundary conditions are approximated by using the mass and momentum fluxes across the interface, which do not require explicit calculation of gradients. A similar procedure is applied to fulfill the diffusion boundary condition. Simple verification tests demonstrate the correctness of the algorithms. 2D- and 3D-foam evolution examples demonstrate the potential of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Körner, Thies M., Arnold M., and Singer R.F., The physics of foaming: structure formation and stability, in Handbook of Cellular Metals, H. P. Degischer and Kriszt B., eds. (Wiley-VCH, 2002), pp. 33–42

  • C. Körner M. Thies R.F. Singer (2002) ArticleTitleModeling of metal foaming with lattice Boltzmann automata Adv. Eng. Mater. 4 765–769

    Google Scholar 

  • C. Körner M. Hirschmann M. Lamm R.F. Singer et al. (2003) Magnesium integral foams J. Banhart (Eds) Cellular Metals. Manufacture, Properties, Applications Verlag MIT Publishing Berlin 209–214

    Google Scholar 

  • X. He L.-S. Luo (1997) ArticleTitleTheory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation Phys. Rev. E. 56 6811–6817 Occurrence Handle1997PhRvE..56.6811H

    ADS  Google Scholar 

  • P. Bhatnagar E. Gross M. Krook (1954) ArticleTitleA model for collision process in gases I: small amplitude processes in charged and neutral one-component system Phys. Rev. E 50 511–525

    Google Scholar 

  • Y.H. Qian D. d’Humières P. Lallemand (1992) ArticleTitleLattice BGK models for Navier-Stokes equation Europhys. Lett. 17 479–484 Occurrence Handle1992EL.....17..479Q

    ADS  Google Scholar 

  • D. Wolf-Gladow (1995) ArticleTitleA Lattice Boltzmann equation for diffusion J. Stat. Phys. 79 1023–1032

    Google Scholar 

  • W. Lorensen H. Cline (1987) ArticleTitleMarching cubes: A high resolution 3D surface reconstruction algorithm Comput. Graph. 21 163–169

    Google Scholar 

  • A. Ladd (1994) ArticleTitleNumerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2 J. Fluid Mech. 271 311 Occurrence Handle1994JFM...271..311L Occurrence Handle95g:76040

    ADS  MathSciNet  Google Scholar 

  • A. Ladd (1994) ArticleTitleNumerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2 J. Fluid Mech. 271 311 Occurrence Handle1994JFM...271..311L Occurrence Handle95g:76040

    ADS  MathSciNet  Google Scholar 

  • R. Mei D. Yu W. Shyy L.-S. Luo (2002) ArticleTitleForce evaluation in the lattice Boltzmann method involving curved geometry Phys. Rev. E 65 041203–114 Occurrence Handle10.1103/PhysRevE.65.041203 Occurrence Handle2002PhRvE..65d1203M

    Article  ADS  Google Scholar 

  • H. Chen C. Teixeira K. Molvig (1998) ArticleTitleRealization of fluid boundary conditions via discrete Boltzmann dynamics Int. J. Mod. Phys. 9 1281–1992 Occurrence Handle1998IJMPC...9.1281C

    ADS  Google Scholar 

  • I. Ginzburg K. Steiner (2001) ArticleTitleA free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids Phil. Trans. R. Soc. Lond. A 360 453–466 Occurrence Handle2002RSPTA.360..453G

    ADS  Google Scholar 

  • I. Ginzburg K. Steiner (2003) ArticleTitleLattice Boltzmann model for free-surface flow and its application to filling process in casting J. Comput. Phys. 185 61–99 Occurrence Handle10.1016/S0021-9991(02)00048-7 Occurrence Handle2003JCoPh.185...61G Occurrence Handle2010158

    Article  ADS  MathSciNet  Google Scholar 

  • Thies M., Lattice Boltzmann modeling with free surfaces applied to in-situ gas generated foam formation, PhD-Thesis, University of Erlangen-Nörnberg (2005)

  • L.D. Landau E.M. Lifschitz (1974) Hydrodynamik Akademie-Verlag Berlin

    Google Scholar 

  • R. Zhang X. He S. Chen (2000) ArticleTitleInterface and surface tension in incompressible lattice Boltzmann multiphase model Comput. Phys. Commun. 129 121–130 Occurrence Handle2000CoPhC.129..121Z Occurrence Handle2001d:76102

    ADS  MathSciNet  Google Scholar 

  • C. Körner M. Thies M. Arnold R.F. Singer et al. (2001) Modeling of metal foaming by in-situ gas formation J. Banhart (Eds) Cellular Metals. Manufacture, Properties, Applications Verlag MIT Publishing Bremen 93–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Körner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körner, C., Thies, M., Hofmann, T. et al. Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming. J Stat Phys 121, 179–196 (2005). https://doi.org/10.1007/s10955-005-8879-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8879-8

Keywords

Navigation