Skip to main content
Log in

Lattice Boltzmann Simulations of Blood Flow: Non-Newtonian Rheology and Clotting Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The numerical simulation of thrombosis in stented aneurysms is an important issue to estimate the efficiency of a stent. In this paper, we consider a Lattice Boltzmann (LB) approach to bloodflow modeling and we implement a non-Newtonian correction in order to reproduce more realistic flow profiles. We obtain a good agreement between simulations and Casson’s model of blood rheology in a simple geometry. Finally we discuss how, by using a passive scalar suspension model with aggregation on top of the LB dynamics, we can describe the clotting processes in the aneurysm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aenis A.P. Stancampiano A.K. Wakhloo B.B. Lieber (1997) ASME J. Biomed. Eng 119 206

    Google Scholar 

  2. E. Aharonov D.H. Rothman (1993) ArticleTitleNon-newtonian flow (through porous media): a lattice boltzmann method Geophys. Res. Lett. 20 679–682 Occurrence Handle1993GeoRL..20..679A

    ADS  Google Scholar 

  3. P. Ahlrichs D. Dünweg (1998) ArticleTitleLattice boltzmann simulation of polymer-solvent system Int. J. Mod. Phys. C 9 1429 Occurrence Handle1998IJMPC...9.1429A

    ADS  Google Scholar 

  4. A.M.M. Artoli A.G. Hoekstra P.M.A. Sloot (2002) Lect. Notes Comput. Sci 2329 361 Occurrence Handle2043303

    MathSciNet  Google Scholar 

  5. D.I. Ataullakhanov V.I. Zarnitsina A.V. Pokhilko A.I. Lobanov O.L. Morozova (2002) ArticleTitleSpatio-temporal dynamics of blood coaggulation and pattern formation –a theoritical approach Int. J. Bifurc. Chaos 12 IssueID9 1985–2002 Occurrence Handle1930907

    MathSciNet  Google Scholar 

  6. J.L. Berry E. Manoach C. Mekkaoui P.H. Rolland J.E. Moore A. Rachev (2002) J. Vasc. Interv. Radiol 13 97

    Google Scholar 

  7. Chopard B., Droz M. Cellular Automata Modeling of Physical Systems. Cambridge University Press, 1998.

  8. B. Chopard A. Dupuis A. Masselot P. Luthi (2002) Adv. Complex Syst 2&3 103–246 Occurrence Handle2003m:82088

    MathSciNet  Google Scholar 

  9. B. Chopard P. Luthi M. Droz (1994) ArticleTitleReaction-diffusion cellular automata model for the formation of Liesegang patterns Phys. Rev. Lett 72 IssueID9 1384–1387 Occurrence Handle10.1103/PhysRevLett.72.1384 Occurrence Handle1994PhRvL..72.1384C

    Article  ADS  Google Scholar 

  10. B. Chopard, P. Luthi, and A. Masselot, Cellular automata and lattice boltzmann techniques: An approach to model and simulate complex systems, 1998. http://cui.unige.ch/∼chopard/FTP/CA/advp.ps.gz.

  11. B. Chopard, A. Masselot, and A. Dupuis, A lattice gas model for erosion and particles transport in a fluid. In Proceedings of the LGA’99 conference, Tokyo, Yu Chen et al., ed. Vol. 129, pp. 167–176. Computer Physics Communications, 2000.

  12. A. Dupuis B. Chopard (2002) ArticleTitleLattice gas modeling of scour formation under submarine pipelines J. Comp. Phys 178 161–174 Occurrence Handle2002JCoPh.178..161D

    ADS  Google Scholar 

  13. H. Fang Z. Wang Z. Lin M. Liu (2002) Phy. Rev. E 65 051925 Occurrence Handle2002PhRvE..65e1925F

    ADS  Google Scholar 

  14. Y. C. Fung, Biomechanics: Mechanical Properites of Living Tissue (Springer-Verlag, 1993).

  15. G. Geremia M. Haklin L. Brennecke (1994) AJNR Am. J. Neuroradiol 15 1223

    Google Scholar 

  16. ISAT Collaborative Group, Lancet. 1267–1274 (2002)

  17. M. Hamuro J.C. Palmaz E.A. Sprague C. Fuss J. Luo (2001) J. Vasc. Interv. Radiol 12 607

    Google Scholar 

  18. M. Hirabayashi M. Ohta D.A. Rüfenacht B. Chopard (2003) Phys. Rev. E 68 021918 Occurrence Handle10.1103/PhysRevE.68.021918 Occurrence Handle2003PhRvE..68b1918H

    Article  ADS  Google Scholar 

  19. M. Hirabayashi, M. Ohta, D. A. Rfenacht, and B. Chopard, In Lect. Notes Comput. Sci. Vol. 2657, page 1044, 2003.

  20. M. Hirabayashi, M. Ohta, D.A. Rfenacht, and B. Chopard, A lattice boltzmann study of blood flow in stented aneurysms. In Future Generation Computer Systems (FGCS), Vol. 20, pp. 925–934, 2003.

  21. S.G. Imbesi C.W. Kerber (2001) AJNR Am. J. Neuroradiol 22 721

    Google Scholar 

  22. A.J.C. Ladd (1994) ArticleTitleNumerical simulation of particulate suspensions via a discretized boltzmann equation J. Fluid Mech 271 285,310

    Google Scholar 

  23. B.B. Lieber A.P. Stancampiano A.K. Wakhloo (1997) Ann. Biomed. Eng 25 IssueID3 460–469

    Google Scholar 

  24. T.M. Liou W.C. Chang C.C. Liao (1997) Exp. Fluids 23 317

    Google Scholar 

  25. M.P. Marks M.D. Dake G.K. Steinberg A.M. Norbash B. Lane (1994) Radiology 191 441

    Google Scholar 

  26. A. Masselot B. Chopard (1998) ArticleTitleA lattice boltzmann model for particle transport and deposition Europhys. Lett. 42 259–264 Occurrence Handle10.1209/epl/i1998-00239-3 Occurrence Handle1998EL.....42..259M

    Article  ADS  Google Scholar 

  27. P. Meakin, Fractals, Scaling and Growth far From Equilibrium (Cambridge University Press, 1998).

  28. N. Rakotomalala D. Salin P. Watzky (1996) ArticleTitleSimulations of viscous flows of complex fluids with a Bhatnagar, Gross, and Krook lattice gas Phys. Fluids. 8 IssueID11 3200–3202 Occurrence Handle10.1063/1.869093 Occurrence Handle1996PhFl....8.3200R

    Article  ADS  Google Scholar 

  29. C. Sadasivan B.B. Lieber M.J. Gounis D.K. Lopes L.N. Hopkins (2002) AJNR Am. J. Neuroradiol 23 1214

    Google Scholar 

  30. S. Succi, The Lattice Boltzmann Equation, For Fluid Dynamics and Beyond (Oxford University Press, 2001).

  31. A.K. Wakhloo F. Schellhammer J. Vries Particlede J. Haberstroh M. Schumacher (1994) AJNR Am. J. Neuroradiol 15 493

    Google Scholar 

  32. D.M. Wootton C.P. Markou S.R. Hanson D.N. Ku (2001) ArticleTitleA mechanistic model of acute platelet accumulation in thrombogenic stenoses Ann Biomed Eng 29 321–329 Occurrence Handle10.1114/1.1359449

    Article  Google Scholar 

  33. S.C.M. Yu J.B Zhao (1999) Med. Eng. Phys 21 133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Chopard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouared, R., Chopard, B. Lattice Boltzmann Simulations of Blood Flow: Non-Newtonian Rheology and Clotting Processes. J Stat Phys 121, 209–221 (2005). https://doi.org/10.1007/s10955-005-8415-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8415-x

Keywords

Navigation