Advertisement

Journal of Statistical Physics

, Volume 122, Issue 4, pp 557–595 | Cite as

Kramers Equation and Supersymmetry

  • Julien Tailleur
  • Sorin Tănase-Nicola
  • Jorge Kurchan
Article

Abstract

Hamilton’s equations with noise and friction possess a hidden supersymmetry, valid for time-independent as well as periodically time-dependent systems. It is used to derive topological properties of critical points and periodic trajectories in an elementary way. From a more practical point of view, the formalism provides new tools to study the reaction paths in systems with separated time scales. A ‘reduced current’ which contains the relevant part of the phase space probability current is introduced, together with strategies for its computation.

Key Words

Kramers equation Supersymmetry Reaction paths Morse theory Stochastic methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Milnor, Morse Theory (Princeton University Press, 1963).Google Scholar
  2. 2.
    E. Witten, J. Diff. Geom. 17:661 (1982).zbMATHMathSciNetGoogle Scholar
  3. 3.
    H. Nicolai, Nucl. Phys. B 176:419 (1980a).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    H. Nicolai, Phys. Lett. B 89:341 (1980b).ADSMathSciNetGoogle Scholar
  5. 5.
    G. Parisi and N. Sourlas, Nucl. Phys. B206:321 (1982).ADSMathSciNetGoogle Scholar
  6. 6.
    S. Cecotti and L. Girardello, Ann. Phys. (N.Y.) 145:81 (1983).CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Tănase-Nicola and J. Kurchan, Journal of Statistical Physics 116(5/6): (2004).Google Scholar
  8. 8.
    S. Tănase-Nicola and J. Kurchan, Phys. Rev. Lett. 91:188302 (2003).ADSGoogle Scholar
  9. 9.
    E. Gozzi, Progress of Theoretical Physics Supplement 111:115 (1993).zbMATHMathSciNetGoogle Scholar
  10. 10.
    E. Deotto, E. Gozzi and D. Mauro, J. Math. Phys. 44:5902 (2003a).ADSMathSciNetGoogle Scholar
  11. 11.
    E. Deotto, E. Gozzi and D. Mauro, J. Math. Phys. 44:5937 (2003b).ADSMathSciNetGoogle Scholar
  12. 12.
    A. J. Niemi, Phys. Lett. B 355:501 (1995).ADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. J. Niemi and P. Pasanen, Phys. Lett. B 386:123 (1996).ADSMathSciNetGoogle Scholar
  14. 14.
    M. Miettinen and A. J. Niemi, Phys. Lett. B 461:89 (1999).ADSMathSciNetGoogle Scholar
  15. 15.
    H. Risken, The Fokker-Plank equation (Springer, 1996).Google Scholar
  16. 16.
    M. Nakahara, Geometry, Topology and Physics (Adam Hilber, 1990).Google Scholar
  17. 17.
    P. Jung and P. Hänggi, Phys. Rev. A. 44:8032 (1991).ADSGoogle Scholar
  18. 18.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Science Publication, 1996).Google Scholar
  19. 19.
    O. Cepas and J. Kurchan, cond-mat/9706296 (1997).Google Scholar
  20. 20.
    H. Kleinert and S. V. Shabanov, Physics Letters A 235:105 (1997).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, vol. 1862 of Lecture Notes in Mathematics (Springer, 2005).Google Scholar
  22. 22.
    R. Mannella, Phys. Rev. E 69:041107 (2004).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Julien Tailleur
    • 1
  • Sorin Tănase-Nicola
    • 1
    • 2
  • Jorge Kurchan
    • 1
  1. 1.PMMH UMR 7636 CNRS-ESPCIParis Cedex 05France
  2. 2.FOM Institute for Atomic and Molecular PhysicsSJ AmsterdamThe Netherlands

Personalised recommendations