Skip to main content
Log in

On the Mean-Field Spherical Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Exact solutions are obtained for the mean-field spherical model, with or without an external magnetic field, for any finite or infinite number N of degrees of freedom, both in the microcanonical and in the canonical ensemble. The canonical result allows for an exact discussion of the loci/ of the Fisher zeros of the canonical partition function. The microcanonical entropy is found to be nonanalytic for arbitrary finite N. The mean-field spherical model of finite size N is shown to be equivalent to a mixed isovector/isotensor σ-model on a lattice of two sites. Partial equivalence of statistical ensembles is observed for the mean-field spherical model in the thermodynamic limit. A discussion of the topology of certain state space submanifolds yields insights into the relation of these topological quantities to the thermodynamic behavior of the system in the presence of ensemble nonequivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, Reading, 1969).

    MATH  Google Scholar 

  2. T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens (Eds.), Dynamics and Thermodynamics of Systems with Long-Range Interactions, Lecture Notes in Physics 602 (Springer, Berlin, 2002).

  3. L. Caiani, L. Casetti, C. Clementi, and M. Pettini, Geometry of dynamics, Lyapunov exponents, and phase transitions, Phys. Rev. Lett. 79:4361–4364 (1997).

    Article  ADS  Google Scholar 

  4. L. Casetti, M. Pettini, and E. G. D. Cohen, Geometric approach to Hamiltonian dynamics and statistical mechanics, Phys. Rep. 337:237–341 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Casetti, E. G. D. Cohen, and M. Pettini, Exact result on topology and phase transitions at any finite N, Phys. Rev. E 65:036112 [4 pages] (2002).

    Google Scholar 

  6. L. Angelani, L. Casetti, M. Pettini, G. Ruocco, and F. Zamponi, Topological signature of first-order phase transitions in a mean-field model, Europhys. Lett. 62:775–781 (2003).

    Article  ADS  Google Scholar 

  7. L. Casetti, M. Pettini, and E. G. D. Cohen, Phase transitions and topology changes in configuration space, J. Stat. Phys. 111:1091–1123 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Franzosi and M. Pettini, Theorem on the origin of phase transitions, Phys. Rev. Lett. 92:060601 [4 pages] (2004).

    Google Scholar 

  9. P. Grinza and A. Mossa, Topological origin of the phase transition in a model of DNA denaturation, Phys. Rev. Lett. 92:158102 [3 pages] (2004).

    Google Scholar 

  10. L. Angelani, L. Casetti, M. Pettini, G. Ruocco, and F. Zamponi, Topology and phase transitions: From an exactly solvable model to a relation between topology and thermodynamics, Phys. Rev. E 71:036152 [12 pages] (2005).

    Google Scholar 

  11. M. Kastner, Topological approach to phase transitions and inequivalence of statical ensembles, Physica A 359, 447–454 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Franzosi, M. Pettini, and L. Spinelli, Topology and phase transitions I: Theorem on a necessary relation, math-ph/0505057.

  13. F. Baroni and L. Casetti, Topological conditions for discrete symmetry breaking and phase transitions, J. Phys. A: Math. Gen. (to appear).

  14. T. H. Berlin and M. Kac, The spherical model of a ferromagnet, Phys. Rev. 86:821–835 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. G. S. Joyce, Critical properties of the spherical model, in: C. Domb and M. S. Green (Eds.), Phase Transitions and Critical Phenomena, Vol. 2 (Academic Press, London, 1972).

    Google Scholar 

  16. G. S. Joyce, Spherical model with long-range ferromagnetic interactions, Phys. Rev. 146:349–358 (1966).

    Article  ADS  Google Scholar 

  17. C. C. Yan and G. H. Wannier, Observations on the spherical model of a ferromagnet, J. Math. Phys. 6:1833–1838 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Sokal and A. O. Starinets, Pathologies of the large-N limit for RP N−1, CP N−1, QP N−1 and mixed isovector/isotensor σ-models, Nucl. Phys. B 601:425–502 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model, Phys. Rev. 87:410–419 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. T. Matsubara and H. Matsuda, A lattice model of liquid helium, I, Prog. Theor. Phys. 16:569–582 (1956).

    Article  MATH  ADS  Google Scholar 

  21. H. E. Stanley, Spherical model as the limit of infinite spin dimensionality, Phys. Rev. 176:718–722 (1968).

    Article  ADS  Google Scholar 

  22. M. Kac and C. J. Thompson, Spherical model and the infinite spin dimensionality limit, Phys. Norvegica 5:163–168 (1971).

    MathSciNet  Google Scholar 

  23. M. Weigel and W. Janke, Numerical extension of CFT amplitude universality to three-dimensional systems, Physica A 281, 287–294 (2000).

    Article  ADS  Google Scholar 

  24. G. Kohring and R. E. Shrock, Generalized isotropic-nematic phase transitions: critical behavior of 3D P N models, Nucl. Phys. B 285:504–518 (1987).

    Article  ADS  Google Scholar 

  25. M. E. Fisher, The nature of critical points, in: W. E. Brittin (Ed.), Lectures in Theoretical Physics, Vol. VII, Part c. (University of Colorado Press, Boulder, 1965)

  26. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Phys. Rev. 87:404–409 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. H. Behringer, Microcanonical entropy for small magnetizations, J. Phys. A: Math. Gen. 37:1443–1458 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. M. Pleimling, H. Behringer, and A. Hüller, Microcanonical scaling in small systems, Phys. Lett. A 328:432–436 (2004).

    Article  ADS  Google Scholar 

  29. M. Kastner, work in progress.

  30. F. Bouchet and J. Barré, Classification of phase transitions and ensemble inequivalence, in systems with long range interactions, J. Stat. Phys. 118:1073–1105 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  31. R. S. Ellis, K. Haven, and B. Turkington, Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles, J. Stat. Phys. 101:999–1064 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Barré, F. Bouchet, T. Dauxois, and S. Ruffo, Large deviation techniques applied to systems with long-range interactions, J. Stat. Phys. 119:677–713 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  33. A. C. Ribeiro Teixeira and D. A. Stariolo, Topological hypothesis on phase transitions: The simplest case, Phys. Rev. E 70:016113 [7 pages] (2004).

    Google Scholar 

  34. M. Kastner, Unattainability of a purely topological criterion for the existence of a phase transition for non-confining potentials, Phys. Rev. Lett. 93:150601 [4 pages] (2004).

    Google Scholar 

  35. D. A. Garanin, R. Schilling, and A. Scala, Saddle index properties, singular topology, and its relation to thermodynamic singularities for a φ4 mean-field model, Phys. Rev. E 70:036125 [9 pages] (2004).

    Google Scholar 

  36. A. Andronico, L. Angelani, G. Ruocco, and F. Zamponi, Topological properties of the mean-field φ4 model, Phys. Rev. E 70:041101 [14 pages] (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kastner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastner, M., Schnetz, O. On the Mean-Field Spherical Model. J Stat Phys 122, 1195–1214 (2006). https://doi.org/10.1007/s10955-005-8031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8031-9

Key Words

Navigation