Skip to main content
Log in

Existence and Uniqueness of Stationary Solutions for 3D Navier–Stokes System with Small Random Forcing via Stochastic Cascades

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the 3D Navier–Stokes system in the Fourier space with regular forcing given by a stationary in time stochastic process satisfying a smallness condition. We explicitly construct a stationary solution of the system and prove a uniqueness theorem for this solution in the class of functions with Fourier transform majorized by a certain function h. Moreover we prove the following “one force—one solution” principle: the unique stationary solution at time t is presented as a functional of the realization of the forcing in the past up to t. Our explicit construction of the solution is based upon the stochastic cascade representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. N. Bhattacharya, L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann and E. C. Waymire, Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations. Trans. Am. Math. Soc. 355(12):5003–5040 (2003).

    Article  MathSciNet  Google Scholar 

  2. Y. Bakhtin, E. Dinaburg and Y. Sinai, On solutions of the Navier-Stokes system of infinite energy and enstrophy. In memory of A. A. Bolibrukh. Uspekhi Mat. Nauk 59(6):55–72 (2004).

    MathSciNet  Google Scholar 

  3. J. Bricmont, A. Kupiainen and R. Lefevere, Ergodicity of the 2D Navier-Stokes equations with random forcing. Commun. Math. Phys. 224(1):65–81 (2001).

    ADS  MathSciNet  Google Scholar 

  4. P.-L. Chow and R. Z. Khasminskii, Stationary solutions of nonlinear stochastic evolution equations. Stochastic Anal. Appl. 15(5):671–699 (1997).

    MathSciNet  Google Scholar 

  5. G. Da Prato and A. Debussche, Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. 82(8):877–947 (2003).

    MathSciNet  Google Scholar 

  6. G. Da Prato and J. Zabczyk, Ergodicity for infinite dimensional systems. London Mathematical Society Lecture Note Series. 229 (Cambridge Univ. Press, Cambridge, 1996) xi, p. 339.

  7. E. Weinan, J. C. Mattingly and Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Comm. Math. Phys. 224(1):83–106 (2001). Dedicated to Joel L. Lebowitz.

    ADS  MathSciNet  Google Scholar 

  8. B. Ferrario, Ergodic results for stochastic Navier-Stokes equation. Stochastics Stochastics Rep. 60(3–4):271–288 (1997).

    MATH  MathSciNet  Google Scholar 

  9. F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 172(1):119–141 (1995).

    Article  MathSciNet  Google Scholar 

  10. F. Flandoli and M. Romito, Statistically stationary solutions to the 3-D Navier-Stokes equation do not show singularities. Electron. J. Probab. 6(5):15 (2001). electronic only.

    MathSciNet  Google Scholar 

  11. M. Hairer and J. C. Mattingly, Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations. Comptes Rendus Mathematique 339(12):879–882 (2004).

    Article  MathSciNet  Google Scholar 

  12. S. Kuksin, A. Piatniski and A. Shirikyan, A coupling approach to randomly forced nonlinear PDE's. II. Commun. Math. Phys. 230(1):81–85, (2002).

    Article  ADS  Google Scholar 

  13. S. Kuksin and A. Shirikyan, Stochastic dissipative PDE's and Gibbs measures. Commun. Math. Phys. 213(2):291–330, (2000).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Kuksin and A. Shirikyan, Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. 81:567–602 (2002).

    MathSciNet  Google Scholar 

  15. Y. Le Jan and A. S. Sznitman, Stochastic cascades and 3-dimensional Navier-Stokes equations. Prob. Theory and Rel. Fields 109(3):343–366 (1997).

    MathSciNet  Google Scholar 

  16. J. C. Mattingly, On Recent Progress for the Stochastic Navier–Stokes Equations. Journées “Equations aux Dérivées Partielles” (Forges-les-Eaux, 2003), XV, Summer 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bakhtin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtin, Y. Existence and Uniqueness of Stationary Solutions for 3D Navier–Stokes System with Small Random Forcing via Stochastic Cascades. J Stat Phys 122, 351–360 (2006). https://doi.org/10.1007/s10955-005-8014-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8014-x

Key Words

Navigation