Skip to main content
Log in

Fourier’s Law for a Microscopic Model of Heat Conduction

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a chain of N harmonic oscillators perturbed by a conservative stochastic dynamics and coupled at the boundaries to two gaussian thermostats at different temperatures. The stochastic perturbation is given by a diffusion process that exchange momentum between nearest neighbor oscillators conserving the total kinetic energy. The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. We prove that the stationary state, in the limit as N→ ∞, satisfies Fourier’s law and the linear profile for the energy average

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bernardin, Heat Conduction model, preprint.

  2. M. Bolsterli M. Rich W.M. Visscher (1970) ArticleTitleSimulation of nonharmonic interactions in a crystal by self-consistent reservoirs Phys. Rev. A 4 1086–1088 Occurrence Handle1970PhRvA...1.1086B

    ADS  Google Scholar 

  3. F. Bonetto J.L. Lebowitz J. Lukkarinen (2004) ArticleTitleFourier’s Law for a harmonic crystal with self-consistent stochastic reservoirs J. Stat. Phys. 116 783–813 Occurrence Handle10.1023/B:JOSS.0000037232.14365.10 Occurrence Handle2082192 Occurrence Handle1142.82367 Occurrence Handle2004JSP...116..783B

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. F. Bonetto J.L. Lebowitz L. Rey-Bellet (2000) Fourier’s law: A challenge to theorists A. Fokas A. Grigorian T. Kibble B Zegarlinski (Eds) Mathematical Physics 2000 Imperial College Press London 128–150

    Google Scholar 

  5. J.P. Eckmann C.A. Pillet L. Rey-Bellet (1999) ArticleTitleNon-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures Commun. Math. Phys. 201 657–697 Occurrence Handle10.1007/s002200050572 Occurrence Handle1999CMaPh.201..657E Occurrence Handle1685893 Occurrence Handle0932.60103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. G. Eyink J.L. Lebowitz H. Spohn (1990) ArticleTitleHydrodynamics of stationary non-equilibrium states for some lattice gas models Comm. Math. Phys. 132 253–283 Occurrence Handle10.1007/BF02278011 Occurrence Handle1069212 Occurrence Handle0706.76082 Occurrence Handle1990CMaPh.132..253E

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. J. Fritz, K. Nagy, and S. Olla, Equilibrium fluctuations for a system of harmonic oscillators with conservative noise, to appear in J. Stat. Phys. 2005.

  8. C. Giardinà and J. Kurchan, Fourier law in a Momentum-conserving chain, preprint (2005).

  9. L. Hormander, The Analysis of Linear PartialDifferential Operators III (Springer, 1985).

  10. C. Kipnis C. Marchioro E. Presutti (1982) ArticleTitleHeat flow in an exactly solvable model J. Stat. Phys. 27 IssueIDN.1 65–74 Occurrence Handle656869 Occurrence Handle10.1007/BF01011740 Occurrence Handle1982JSP....27...65K

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Kipnis C. Landim S. Olla (1995) ArticleTitleMacroscopic Properties of a Stationary Non-Equilibrium Distribution for a Non-Gradient Interacting Particles System Ann. Inst. H. Poincaré, probabilités et statistiques 31 IssueIDn.1 191–221 Occurrence Handle1340037 Occurrence Handle0819.60096

    MathSciNet  MATH  Google Scholar 

  12. S. Lepri R. Livi A. Politi (2003) ArticleTitleThermal Conduction in classical low-dimensional lattices Phys. Rep. 377 1–80 Occurrence Handle10.1016/S0370-1573(02)00558-6 Occurrence Handle2003PhR...377....1L Occurrence Handle1978992

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Olla S.R.S. Varadhan (1991) ArticleTitleScaling Limits for Interacting Ornstein–Uhlenbeck Processes Comm. Math. Phys. 135 335–378 Occurrence Handle10.1007/BF02098047 Occurrence Handle1087388 Occurrence Handle1991CMaPh.135..355O

    Article  MathSciNet  ADS  Google Scholar 

  14. L. Rey-Bellet, Open Classical Systems, Lecture Notes of the 2003 Grenoble Summer School on Open Quantum Systems, http://www.math.umass.edu/~lr7q/ps_files/gren2.pdf.

  15. Z. Rieder J.L. Lebowitz E. Lieb (1967) ArticleTitleProperties of harmonic crystal in a stationary non-equilibrium state J. Math. Phys. 8 1073–1078 Occurrence Handle10.1063/1.1705319 Occurrence Handle1967JMP.....8.1073R

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Bernardin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardin, C., Olla, S. Fourier’s Law for a Microscopic Model of Heat Conduction. J Stat Phys 121, 271–289 (2005). https://doi.org/10.1007/s10955-005-7578-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-7578-9

Keywords

Navigation