Skip to main content
Log in

Exactly Solvable Model of Quantum Diffusion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the transport property of diffusion in a finite translationally invariant quantum subsystem described by a tight-binding Hamiltonian with a single energy band. The subsystem interacts with its environment by a coupling expressed in terms of correlation functions which are delta-correlated in space and time. For weak coupling, the time evolution of the subsystem density matrix is ruled by a quantum master equation of Lindblad type. Thanks to the invariance under spatial translations, we can apply the Bloch theorem to the subsystem density matrix and exactly diagonalize the time evolution superoperator to obtain the complete spectrum of its eigenvalues, which fully describe the relaxation to equilibrium. Above a critical coupling which is inversely proportional to the size of the subsystem, the spectrum at given wave number contains an isolated eigenvalue describing diffusion. The other eigenvalues rule the decay of the populations and quantum coherences with decay rates which are proportional to the intensity of the environmental noise. An analytical expression is obtained for the dispersion relation of diffusion. The diffusion coefficient is proportional to the square of the width of the energy band and inversely proportional to the intensity of the environmental noise because diffusion results from the perturbation of quantum tunneling by the environmental fluctuations in this model. Diffusion disappears below the critical coupling

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.W. Ashcroft N.D. Mermin (1976) Solid State Physics Saunders College Fort Worth

    Google Scholar 

  2. Holstein T. Ann. Phys. 8:325, 343 (1959).

    Google Scholar 

  3. A.A. Ovchinnikov N.S. Erikhman (1975) Sov. Phys. JETP 40 733 Occurrence Handle1974JETP...40..733O

    ADS  Google Scholar 

  4. Madhukar A., and Post W., Phys. Rev. Lett. 39:1424 (1977); Girvin S.M., and Mahan G.D., Phys. Rev. B 20:4896 (1979).

  5. A.O. Caldeira A.J. Leggett (1983) Physica A 121 587 Occurrence Handle10.1016/0378-4371(83)90013-4 Occurrence Handle1983PhyA..121..587C Occurrence Handle726154 Occurrence Handle0585.60082

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Schmid (1983) ArticleTitlePhys Rev. Lett. 51 1506 Occurrence Handle10.1103/PhysRevLett.51.1506 Occurrence Handle1983PhRvL..51.1506S Occurrence Handle84j:22022

    Article  ADS  MathSciNet  Google Scholar 

  7. M.P.A. Fisher W. Zwerger (1985) ArticleTitlePhys Rev. B. 32 6190

    Google Scholar 

  8. M. Sassetti M. Milch U. Weiss (1992) Phys. Rev. A 46 4615 Occurrence Handle10.1103/PhysRevA.46.4615 Occurrence Handle1992PhRvA..46.4615S

    Article  ADS  Google Scholar 

  9. M. Sassetti H. Schomerus U. Weiss (1996) Phys. Rev. B 53 R2914 Occurrence Handle10.1103/PhysRevB.53.R2914 Occurrence Handle1996PhRvB..53.2914S

    Article  ADS  Google Scholar 

  10. U. Weiss (2000) Quantum Dissipative Systems EditionNumber2 World Scientific Singapore

    Google Scholar 

  11. C.H. Mak R. Egger (1994) Phys. Rev. E 49 1997 Occurrence Handle10.1103/PhysRevE.49.1997 Occurrence Handle1994PhRvE..49.1997M

    Article  ADS  Google Scholar 

  12. Y.-C. Chen J.L. Lebowitz C. Liverani (1989) Phys. Rev. B 40 4664 Occurrence Handle1989PhRvB..40.4664C

    ADS  Google Scholar 

  13. Y.-C. Chen J.L. Lebowitz (1992) Phys Rev B 46 10743 Occurrence Handle1992PhRvB..4610743C

    ADS  Google Scholar 

  14. Y.-C. Chen J.L. Lebowitz (1992) Phys. Rev. B 46 10751 Occurrence Handle1992PhRvB..4610751C

    ADS  Google Scholar 

  15. F. Barra P. Gaspard (2001) Phys. Rev. E 65 016205 Occurrence Handle2002PhRvE..65a6205B Occurrence Handle1877615

    ADS  MathSciNet  Google Scholar 

  16. D.K. Wójcik J.R. Dorfman (2004) Physica D 187 223 Occurrence Handle10.1016/j.physd.2003.09.012 Occurrence Handle2004PhyD..187..223W Occurrence Handle1045.37504

    Article  ADS  MATH  Google Scholar 

  17. A. Knauf (1989) Ann. Phys 191 205 Occurrence Handle1003009 Occurrence Handle1989AnPhy.191..205K

    MathSciNet  ADS  Google Scholar 

  18. A.G. Redfield (1957) IBM J. Res. Dev 1 19 Occurrence Handle10.1147/rd.11.0019

    Article  Google Scholar 

  19. N.G. Kampen Particlevan (1997) Stochastic Processes in Physics and Chemistry EditionNumber2 North-Holland Amsterdam

    Google Scholar 

  20. R. Kubo M. Toda N. Hashitsume (1998) Statistical Physics II: Nonequilibrium Statistical Mechanics EditionNumber2 Springer Berlin Occurrence Handle0996.60501

    MATH  Google Scholar 

  21. P. Gaspard M. Nagaoka (1999) J. Chem. Phys 111 5668 Occurrence Handle1999JChPh.111.5668G

    ADS  Google Scholar 

  22. H.P. Breuer F. Petruccione (2002) The Theory of Open Quantum Systems Oxford University Press New York Occurrence Handle1053.81001

    MATH  Google Scholar 

  23. M. Esposito P. Gaspard (2005) Phys. Rev. B 71 214302 Occurrence Handle10.1103/PhysRevB.71.214302 Occurrence Handle2005PhRvB..71u4302E

    Article  ADS  Google Scholar 

  24. G. Lindblad (1976) Commun Math. Phys 48 119 Occurrence Handle10.1007/BF01608499 Occurrence Handle0343.47031 Occurrence Handle413878 Occurrence Handle1976CMaPh..48..119L

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Gorini V., Frigerio A., Verri M., Kossakowski A., and E. C. G. Sudarshan, Rep. Math. Phys. 13:149 (1978); Gorini V., and Kossakowski A., J. Math. Phys. 17:1298 (1976); V. Gorini, Kossakowski A., and Sudarshan E., C.G., Math J.,. Phys. 17:821 (1976).

  26. H. Spohn (1980) Rev Mod Phys 52 569 Occurrence Handle10.1103/RevModPhys.52.569 Occurrence Handle1980RvMP...52..569S Occurrence Handle578142

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Jaksic C.-A. Pillet (1997) Ann. Inst. H. Poincaré Phys. Theor 67 425 Occurrence Handle1632244 Occurrence Handle0910.60084

    MathSciNet  MATH  Google Scholar 

  28. V. Jaksic C.-A. Pillet (1997) J. Math. Phys 38 1757 Occurrence Handle1997JMP....38.1757J Occurrence Handle1450897 Occurrence Handle0891.47053

    ADS  MathSciNet  MATH  Google Scholar 

  29. P. Gaspard (1996) Phys. Rev. E 53 4379 Occurrence Handle10.1103/PhysRevE.53.4379 Occurrence Handle1996PhRvE..53.4379G Occurrence Handle1388937

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Gaspard (1998) Chaos, Scattering, and Statistical Mechanics Cambridge University Press Cambridge UK Occurrence Handle0915.00011

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gaspard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, M., Gaspard, P. Exactly Solvable Model of Quantum Diffusion. J Stat Phys 121, 463–496 (2005). https://doi.org/10.1007/s10955-005-7577-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-7577-x

Keywords

Navigation