Skip to main content
Log in

Poiseuille Flow in a Heated Granular Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The planar Poiseuille flow induced by a constant external field (e.g., gravity) has been the subject of recent interest in the case of molecular gases. One of the predictions from kinetic theory (confirmed by computer simulations) has been that the temperature profile exhibits a bimodal shape with a local minimum in the middle of the slab surrounded by two symmetric maxima, in contrast to the unimodal shape expected from the Navier–Stokes (NS) equations. However, from a practical point of view, the interest of this non-Newtonian behavior in molecular gases is rather academic since it requires values of gravity extremely higher than the terrestrial one. On the other hand, gravity plays a relevant role in the case of granular gases due to the mesoscopic nature of the grains. In this paper we consider a dilute gas of inelastic hard spheres enclosed in a slab under the action of gravity along the longitudinal direction. In addition, the gas is subject to a white-noise stochastic force that mimics the effect of external vibrations customarily used in experiments to compensate for the collisional cooling. The system is described by means of a kinetic model of the inelastic Boltzmann equation and its steady-state solution is derived through second order in gravity. This solution differs from the NS description in that the hydrostatic pressure is not uniform, normal stress differences are present, a component of the heat flux normal to the thermal gradient exists, and the temperature profile includes a positive quadratic term. As in the elastic case, this new term is responsible for the bimodal shape of the temperature profile. The results show that, except for high inelasticities, the effect of inelasticity on the profiles is to slightly decrease the quantitative deviations from the NS results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tij, M., Santos, A. Poiseuille Flow in a Heated Granular Gas. J Stat Phys 117, 901–928 (2004). https://doi.org/10.1007/s10955-004-5710-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-5710-x

Keywords

Navigation