Skip to main content

Advertisement

Log in

Impacts of Short-Chain Alcohols on the Cloudy Development and Thermodynamics of Triton X-100 and Metformin Hydrochloride Drug Mixture

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Cloud point (CP) of aqueous solution of metformin hydrochloride (MNH) and triton X-100 (TX-100) was examined in presence of several alcohols (MeOH, EtOH, 1-PrOH, 2-PrOH, and 1-BuOH). The main focal point of this study was to evaluate the cloud development for the combination of TX-100 and MNH, as well as to indicate the mode of how various alcohols influence both the physicochemical parameters and interaction forces of that mixture. The cloud point (CP) measurement technique was chosen because of its broad applicability in both the medical and industrial sectors. As alcohol contents increased, higher CP values of TX-100 and MNH mixture were observed except in aq. 1-BuOH (CP is decreased). In the aqueous alcoholic medium (above 3000 mmol·kg−1), the phase separation of TX-100 (92.7 mmol·kg−1) and MNH (2 mmol·kg−1) mixture showed the subsequent trend: CP (H2O + 2-PrOH) ˃ CP (H2O + MeOH) > CP (H2O + EtOH) ˃ CP (H2O + 1-PrOH). It was observed that the depth to which alcohol molecules penetrate micelles is influenced by the length of the alcohol chain. Longer hydrophobic alcohol molecules have the ability to impair more ethylene oxide–water (EO-water) interactions by penetrating deeper into the micelle’s palisade layer. As a result, there is more occurrence of dehydration, which promotes the production of micellar particles as well as lowers the cloud point substantially. The calculated \({\Delta G}_{c}^{0}\) values of the TX-100 + MNH mixture in alcohols media are appeared as positive in every scenario examined, proving that the clouding procedure is not spontaneous. The positive \({\Delta G}_{c}^{0}\) results might be attributed to the surfactant’s surface layer in forming H-bond via the water molecules. A decrease in the positive \({\Delta G}_{c}^{0}\) values is evidenced by a rise in alcohol concentrations. Consequently, there is less non-spontaneity at higher alcohol concentrations. The \(+{\Delta H}_{c}^{0}\) (endothermic) and \(+{\Delta S}_{c}^{0}\) magnitudes are detected in aq. MeOH, EtOH, and 2-PrOH solutions. However, \({\Delta H}_{c}^{0}\) and \({\Delta S}_{c}^{0}\) magnitudes are found as positive (endothermic) and negative (exothermic) at lower and higher contents of 1-PrOH solution while the opposite trend in the \({\Delta H}_{c}^{0}\) and \({\Delta S}_{c}^{0}\) was detected in aq. 1-BuOH solution.

Graphical Abstract

Possible interactions among TX-100 and metformin hydrochloride in aqueous 1-BuOH media

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during the study are available from the corresponding author on reasonable request.

References

  1. Kumar, D., Rub, M.A.: Role of cetyltrimethylammonium bromide (CTAB) surfactant micelles on kinetics of [Zn(II)-Gly-Leu]+ and ninhydrin. J. Mol. Liq. 274, 639–645 (2019). https://doi.org/10.1016/j.molliq.2018.11.035

    Article  CAS  Google Scholar 

  2. Rub, M.A., Azum, N., Kumar, D., Arshad, M.N., Khan, A., Alotaibi, M.M., Asiri, A.M.: Investigation of solution behavior of antidepressant imipramine hydrochloride drug and non-ionic surfactant mixture: experimental and theoretical study. Polymers 13, 4025 (2021). https://doi.org/10.3390/polym13224025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakahara, H., Nishino, A., Tanaka, A., Fujita, Y., Shibata, O.: Interfacial behavior of gemini surfactants with different spacer lengths in aqueous medium. Colloid Polym. Sci. 297, 183–189 (2019). https://doi.org/10.1007/s00396-018-4459-8

    Article  CAS  Google Scholar 

  4. Rub, M.A., Kumar, D.: Interaction of ninhydrin with zinc(II) complex of tryptophan in the three dicationic gemini surfactants. Colloid Polym. Sci. 297, 1519–1527 (2019). https://doi.org/10.1007/s00396-019-04569-4

    Article  CAS  Google Scholar 

  5. Kumar, D., Rub, M.A.: Interaction of metal ion-coordinated dipeptide complex and ninhydrin in alkanediyl-α-ω-bis-type gemini surfactants system. J. Surfact. Deterg. 22, 1299–1308 (2019). https://doi.org/10.1002/jsde.12340

    Article  CAS  Google Scholar 

  6. Kumar, D., Rub, M.A.: Alkanediyl-α, ω–type gemini micelles–catalyzed study between ninhydrin and [Ni(II)-Trp]+ complex. Colloid Polym. Sci. 298, 1411–1421 (2020). https://doi.org/10.1007/s00396-020-04728-y

    Article  CAS  Google Scholar 

  7. Amin, M.R., Rub, M.A., Shah, A.H., Kumar, D., Rahman, M.M., Hoque, M.A., Kabir, M., Asiri, A.M., Kabir, S.E.: Phase separation and conductivity studies on the interaction of promethazine hydrochoride drug with cationic and nonionic surfactants: influences of electrolytes and temperature. J. Mol. Liq. 359, 119325 (2022). https://doi.org/10.1016/j.molliq.2022.119325

    Article  CAS  Google Scholar 

  8. Molina-Bolívar, J.A., Aguiar, J., Ruiz, C.C.: Light scattering and fluorescence probe studies on micellar properties of triton X-100 in KCl solution. Mol. Phys. 99, 1729–1741 (2001). https://doi.org/10.1080/00268970110068750

    Article  Google Scholar 

  9. Liu, C.-L., Nikas, Y.J., Blankschtein, D.: Novel bioseparations using two-phase aqueous micellar systems. Biotech. Bioeng. 52, 185–192 (1996). https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2%3c185::AID-BIT1%3e3.0.CO;2-MC

    Article  CAS  Google Scholar 

  10. Attwood, D., Florence, A.T.: Surfactant Systems; Their Chemistry, Pharmacy and Biology. Chapman & Hall, New York (1983)

    Google Scholar 

  11. Rub, M.A., Azum, N., Asiri, A.M.: Binary mixtures of sodium salt of ibuprofen and selected bile salts: interface, micellar, thermodynamic, and spectroscopic study. J. Chem. Eng. Data 62, 3216–3228 (2017). https://doi.org/10.1021/acs.jced.7b00298

    Article  CAS  Google Scholar 

  12. Ahsan, S.M.A., Mahbub, S., Hoque, M.A., Khan, M.A., Kumar, D., Khan, J.M., El-Sherbeeny, A.M.: Influence of electrolytes on the cloud point phenomenon of tween-80 + lomefloxacin hydrochloride mixtures and their thermodynamic parameters. J. Mol. Liq. 318, 113999 (2020). https://doi.org/10.1016/j.molliq.2020.113999

    Article  CAS  Google Scholar 

  13. Patidar, P., Bahadur, A.: Modulating effect of different biomolecules and other additives on cloud point and aggregation of amphiphilic linear and starblock copolymer. J. Mol. Liq. 249, 219–226 (2018). https://doi.org/10.1016/j.molliq.2017.11.019

    Article  CAS  Google Scholar 

  14. Han, S.K., Lee, S.M., Schott, H.: The effect of protein denaturants on the cloud point of a nonionic surfactant. J. Colloid Interface Sci. 126, 393–396 (1988). https://doi.org/10.1016/0021-9797(88)90138-5

    Article  CAS  Google Scholar 

  15. Sharma, K.S., Patil, S.R., Rakshit, A.K.: Study of the cloud point of C12En nonionic surfactants: effect of additives. Colloid Surf. A 219, 67–74 (2013). https://doi.org/10.1016/S0927-7757(03)00012-8

    Article  CAS  Google Scholar 

  16. Nakagawa, T., Shinoda, K.: Physicochemical studies in aquous solutions of nonionic surface active agents. In: Colloidal Surfactants Some Physicochemical Properties, pp. 97–178. Academic Press Inc., New York (1963)

    Chapter  Google Scholar 

  17. Mudawadkar, A.D., Sonawane, G., Patil, T.J.: Thermodynamics of micellization of nonionic surfactant triton X-100 in presence of additive poly-N-vinyl-pyrrolidone using clouding phenomenon. Orient. J. Chem. 29, 227–233 (2013)

    Article  CAS  Google Scholar 

  18. Alauddin, M., Parvin, T., Begum, T.: Effect of organic additives on the cloud point of triton X-100 micelles. J. Appl. Sci. 9, 2301–2306 (2009). https://doi.org/10.3923/jas.2009.2301.2306

    Article  CAS  Google Scholar 

  19. Mahajan, S., Shaheen, A., Banipal, T.S., Mahajan, R.K.: Cloud point and surface tension studies of triblock copolymer-ionic surfactant mixed systems in the presence of amino acids or dipeptides and electrolytes. J. Chem. Eng. Data 55, 3995–4001 (2010). https://doi.org/10.1021/je1000445

    Article  CAS  Google Scholar 

  20. Alam, M.S., Nareshkumar, V., Vijayakumar, N., Madhavan, K., Mandal, A.B.: Effect of additives on the cloud point of mixed surfactant (non-ionic Triton X-114 + cationic gemini 16–6-16) solutions. J. Mol. Liq. 194, 206–211 (2014). https://doi.org/10.1016/j.molliq.2014.02.042

    Article  CAS  Google Scholar 

  21. Alam, M.S., Mandal, A.B.: The clouding phenomena of mixed surfactant (non-ionic Triton X-114 + cationic gemini 16–5-16) solutions: Influence of inorganic and organic additives on the cloud point. J. Mol. Liq. 212, 237–244 (2015). https://doi.org/10.1016/j.molliq.2015.08.051

    Article  CAS  Google Scholar 

  22. Panchal, K., Desai, A., Nagar, T.: Physicochemical behavior of mixed nonionic-ionic surfactants in water and aqueous salt solutions. J. Dispers. Sci. Technol. 27, 33–38 (2006). https://doi.org/10.1081/DIS-200066673

    Article  CAS  Google Scholar 

  23. Amin, M.R., Mahbub, S., Molla, M.R., Alam, M.M., Hossain, M.F., Rana, S., Rub, M.A., Hoque, M.A., Kumar, D.: Phase separation and thermodynamic behavior of triton X-100 in the occurrence of levofloxacin hemihydrates: influence of additives. J. Chem. Eng. Data 64, 2750–2758 (2019). https://doi.org/10.1021/acs.jced.9b00146

    Article  CAS  Google Scholar 

  24. Hosen, M.M., Rakhi, S.S., Alfakeer, M., Rahman, M.M., Mahbub, S., Hoque, M.A., Kumar, D.: The influence of organic and inorganic additives on the polymer mediated phase separation of triton X-100. J. Mol. Liq. 335, 116182 (2021). https://doi.org/10.1016/j.molliq.2021.116182

    Article  CAS  Google Scholar 

  25. Purkait, M.K., Gupta, S.D., De, S.: Determination of thermodynamic parameters for the cloud point extraction of different dyes using TX-100 and TX-114. Desalination 244, 130–138 (2009). https://doi.org/10.1016/j.desal.2008.04.042

    Article  CAS  Google Scholar 

  26. Purkait, M.K., DasGupta, S., De, S.: Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. J. Hazard. Mater. 137, 827–835 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  27. Ban, E., Chae, D.-K., Song, E.J.: Enhanced extraction efficiency of miRNA from cells by addition of triton X-100. Anal. Bioanal. Chem. 405, 7535–7539 (2013). https://doi.org/10.1007/s00216-013-7170-0

    Article  CAS  PubMed  Google Scholar 

  28. Rub, M.A., Hasan, T., Akter, R., Kumar, D., Kabir-ud-Din, A., Hoque, A.M.: Physico-chemical investigation of the assembly and clouding development nature of the mixture of metformin hydrochloride and ionic/nonionic surfactants: Influences of hydrotropes. J. Mol. Liq. 371, 121070 (2023). https://doi.org/10.1016/j.molliq.2022.121070

    Article  CAS  Google Scholar 

  29. Khan, M.A.R., Amin, M.R., Patoary, M.O.F., Rub, M.A., Hoque, M.A., Khan, M.A., Kumar, D., Asiri, A.M., Khan, F., Alfaifi, S.Y.: Influence of electrolytes on the clouding and thermodynamic nature of non-ionic surfactant in the presence of an antibiotic drug. Phys. Chem. Liq. 59, 781–794 (2021). https://doi.org/10.1080/00319104.2020.1815020

    Article  CAS  Google Scholar 

  30. Mahbub, S., Rub, M.A., Hoque, M.A.: Clouding and thermodynamic characteristics of triton X-100 in the presence of ciprofloxacin hydrochloride: influence of polyols. J. Chem. Eng. Data 64, 4181–4188 (2019). https://doi.org/10.1021/acs.jced.9b00579

    Article  CAS  Google Scholar 

  31. Khan, M.A.R., Amin, M.R., Mahbub, S., Alam, M.M., Rub, M.A., Hoque, M.A., Khan, M.A., Asiri, A.M.: Effect of various electrolytes on the phase separation and thermodynamic properties of p-tert-alkylphenoxy poly (oxyethylene) ether in the absence/presence of drugs. J. Surfact. Deterg. 22, 613–623 (2019). https://doi.org/10.1002/jsde.12248

    Article  CAS  Google Scholar 

  32. Mahbub, S.: The impact of electrolyte and urea on the phase separation of triton X-100. J. Mol. Liq. 307, 112912 (2020). https://doi.org/10.1016/j.molliq.2020.112912

    Article  CAS  Google Scholar 

  33. Rahim, M.A., Mahbub, S., Ahsan, S.M.A., Rana, S., Rub, M.A., Hoque, M.A., Kabir, S.E., Asiri, A.M.: Influence of polyol/salt additives on the drug-mediated phase separation and thermodynamic properties of triton X-100. J. Chem. Eng. Data 64, 5999–6008 (2019). https://doi.org/10.1021/acs.jced.9b00838

    Article  CAS  Google Scholar 

  34. Rahman, M., Hoque, M.A., Khan, M.A., Rub, M.A., Asiri, A.M.: Effect of different additives on the phase separation behavior and thermodynamics of p-tert-alkylphenoxy poly (oxyethylene) ether in absence and presence of drug. Chinese J. Chem. Eng. 26, 1110–1118 (2018). https://doi.org/10.1016/j.cjche.2017.10.011

    Article  CAS  Google Scholar 

  35. Pradhan, S.K., Sahoo, A.K., Patnaik, A.K., Das, S., Senapati, A.K.: Kinetics of oxidation of antidiabetic drug metformin hydrochloride by vanadium(V) in acidic and micellar medium. SN Appl. Sci. 2, 2058 (2020). https://doi.org/10.1007/s42452-020-03664-4

    Article  CAS  Google Scholar 

  36. Stoica, R.A., Stefan, D.S., Rizzo, M., Suceveanu, A.I., Suceveanu, A.P., Serafinceanu, C., Pantea-Stoian, A.: Metformin indications, dosage, adverse reactions, and contraindications, Intechopen, United Kingdom, 1–17 (2020).

  37. Adikwu, M.U., Yoshikawa, Y., Takada, K.: Pharmacodynamic-pharmacokinetic profiles of metformin hydrochloride from a mucoadhesive formulation of a polysaccharide with antidiabetic property in streptozotocin-induced diabetic rat models. Biomaterials 25, 3041–3048 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.073

    Article  CAS  PubMed  Google Scholar 

  38. O. nell, M.J.: Metformin the Merck Index, 13th edn. Merck & Co. Inc., Rahway (2001)

    Google Scholar 

  39. He, X., Jin, S., Fan, W., Fan, B.: Synergistic in vitro antimicrobial activity of triton X-100 and metformin against enterococcus faecalis in normal and high-glucose conditions. Microorganisms 10, 124 (2022). https://doi.org/10.3390/microorganisms10010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akter, R., Mahbub, S., Alfakeer, M., Joy, M.T.R., Ishtiak, M.N., Rana, S., Kumar, D., Hoque, M.A.: The impact of sodium salts on the physicochemical properties of the mixture of tetradecyltrimethylammonium bromide and metformin hydrochloride drug at several temperatures. Mol. Phys. 120, e2081266 (2022). https://doi.org/10.1080/00268976.2022.2081266

    Article  CAS  Google Scholar 

  41. Danielsson, R., Albertsson, P.-Å.: Aqueous polymer two-phase systems and their use in fragmentation and separation of biological membranes for the purpose of mapping the membrane structure. Prep. Biochem. Biotechnol. 43, 512–525 (2013). https://doi.org/10.1080/10826068.2013.773449

    Article  CAS  PubMed  Google Scholar 

  42. Blankschtein, D., Thurston, G.M., Benedek, G.B.: Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions. J. Chem. Phys. 85, 7268–7288 (1986). https://doi.org/10.1063/1.451365

    Article  CAS  Google Scholar 

  43. Hua, R.Z., Jing, H., Lu, L., Rong, Y.X., Po, S.D., Ling, C.Y.: Thermodynamics and phase separation phenomenon of polyoxyethylene sorbitan monolaurate in micellar solutions containing inorganic salts. J. Taiwan Inst. Chem. Eng. 96, 29–34 (2019). https://doi.org/10.1016/j.jtice.2018.11.004

    Article  CAS  Google Scholar 

  44. Alam, M.R., Islam, M.R., Khan, J.M., Rayhan, U., Rana, S., Kumar, D., Ahmad, A., Hoque, M.A., Kabir, S.E.: Physicochemical investigations of clouding development and physicochemical properties of Triton X-100 and levofloxacin hemihydrate mixture: influence of sodium salts composition. Colloid Polym. Sci. 301, 1125–1136 (2023). https://doi.org/10.1007/s00396-23-05132-y

    Article  CAS  Google Scholar 

  45. Naqvi, A.Z.: Clouding phenomenon in amphiphilic systems: a review of five decades. Colloid Surf. B 165, 325–344 (2018). https://doi.org/10.1016/j.colsurfb.2018.01.060

    Article  CAS  Google Scholar 

  46. Cui, X., Mao, S., Liu, M., Yuan, H., Du, Y.: Mechanism of surfactant micelle formation. Langmuir 24, 10771–10775 (2008). https://doi.org/10.1021/la801705y

    Article  CAS  PubMed  Google Scholar 

  47. Hasan, T., Mahbub, S., Kumar, D., Gatasheh, M.K., Joy, M.T.R., Goni, M.A., Rana, S., Hoque, M.A.: Phase separation and thermodynamics of the mixture of metformin hydrochloride + triton X-100 in ammonium salts media: impacts of composition of media. Mol. Phys. 120, e2121776 (2022). https://doi.org/10.1080/00268976.2022.2121776

    Article  CAS  Google Scholar 

  48. Hasan, T., Rub, M.A., Joy, M.T.R., Rana, S., Khan, F., Hoque, M.A., Kabir, M.: Clouding and thermodynamic behavior of the triton X-100 + metformin hydrochloride drug mixture: investigation of the impacts of potassium salts. J. Mol. Liq. 354, 118853 (2022). https://doi.org/10.1016/j.molliq.2022.118853

    Article  CAS  Google Scholar 

  49. Islam, S.M.R., Rub, M.A., Islam, M.R., Hasan, K., Mahbub, S., Alghamdi, Y.G., Asiri, A.M., Rana, S., Hoque, M.A., Islam, D.M.S.: Phase separation and aggregation phenomena of TX-100 and promethazine hydrochloride mixture: influences of monohydroxy organic compounds. J. Mol. Liq. 380, 121728 (2023). https://doi.org/10.1016/j.molliq.2023.121728

    Article  CAS  Google Scholar 

  50. Li, J.-L., Bai, D.-S., Chen, B.-H.: Effects of additives on the cloud points of selected nonionic linear ethoxylated alcohol surfactants. Colloid Surf. A 346, 237–243 (2009). https://doi.org/10.1016/j.colsurfa.2009.06.020

    Article  CAS  Google Scholar 

  51. Bhuiyan, H.A., Khan, J.M., Islam, M.R., Rana, S., Ahmed, A., Hoque, M.A., Rahman, M.M., Kabir, S.E.: Physico-chemical parameters of phase separation of the mixture of BSA and triton X 100 in aqueous solutions of monohydroxy compounds. Int. J. Biol. Macromol. 222A, 181–187 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.169

    Article  CAS  Google Scholar 

  52. Rahman, M., Anwar, S.J., Molla, M.R., Rana, S., Hoque, M.A., Rub, M.A., Khan, M.A., Kumar, D.: Influence of alcohols and varying temperatures on the interaction between drug ceftriaxone sodium trihydrate and surfactant: a multi-techniques study. J. Mol. Liq. 292, 111322 (2019). https://doi.org/10.1016/j.molliq.2019.111322

    Article  CAS  Google Scholar 

  53. Akter, S., Molla, M.R., Mahbub, S., Rub, M.A., Hoque, M.A., Islam, D.M.S.: Effect of temperature and salt/alcohol on the interaction of tetradecyltrimethylammonium bromide/Triton X-100 with moxifloxacin hydrochloride: a multitechnique approach. J. Dispers. Sci. Technol. 40, 574–586 (2019). https://doi.org/10.1080/01932691.2018.1472005

    Article  CAS  Google Scholar 

  54. Rao, I.V., Ruckenstein, E.: Micellization behavior in the presence of alcohols. J. Colloid Interface Sci. 113, 375–387 (1986). https://doi.org/10.1016/0021-9797(86)90173-6

    Article  CAS  Google Scholar 

  55. Díaz-Fernández, Y., Rodríguez-Calvo, S., Pérez-Gramatges, A.: Influence of organic additives on the cloud point of PONPE-7.5. Phys. Chem. Chem. Phys. 4, 5004–5006 (2002). https://doi.org/10.1039/b205341a

    Article  CAS  Google Scholar 

  56. Kabir-ud-Din, Khatoon, S., Naqvi, A.Z.: The effect of added salts and organics on the cloud point of TX-114. J. Dispers. Sci. Technol. 29, 485–491 (2008). https://doi.org/10.1080/01932690701727140

    Article  CAS  Google Scholar 

  57. Rocha, S.A.N., Costa, C.R., Celino, J.J., Teixeira, L.S.G.: Effect of additives on the cloud point of the octylphenol ethoxylate (30EO) nonionic surfactant. J. Surfact. Deterg. 16, 299–303 (2013). https://doi.org/10.1007/s11743-012-1421-5

    Article  CAS  Google Scholar 

  58. Gu, T., Galera-Gómez, P.A.: The effect of different alcohols and other polar organic additives on the cloud point of Triton X-100 in water. Colloid Surf. A 147, 365–370 (1999). https://doi.org/10.1016/S0927-7757(98)00710-9

    Article  CAS  Google Scholar 

  59. Naqvi, A.Z., Rub, M.A., Kabir-ud-Din: Effects of pharmaceutical excipients on cloud points of amphiphilic drugs. J. Colloid Interface Sci. 361, 42–48 (2011). https://doi.org/10.1016/j.jcis.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  60. Müller, B.W., Albers, E.: Complexation of dihydropyridine derivatives with cyclodextrins and 2-hydroxypropyl-β-cyclodextrin in solution. Int. J. Pharm. 79, 273–288 (1992). https://doi.org/10.1016/0378-5173(92)90120-Q

    Article  Google Scholar 

  61. Majhi, P.R., Mukherjee, K., Moulik, S.P., Sen, S., Sahu, N.P.: Solution properties of a Saponin (Acaciaside) in the presence of triton X-100 and Igepal. Langmuir 15, 6624–6630 (1999). https://doi.org/10.1021/la980334q

    Article  CAS  Google Scholar 

  62. Nakayama, K., Fujino, H., Kasai, R., Mitoma, Y., Yata, N., Tanaka, O.: Solubilizing Properties of saponins from sapindus mukurossi GAERTN. Chem. Pharm. Bull. 34, 3279–3283 (1986). https://doi.org/10.1248/cpb.34.3279

    Article  CAS  Google Scholar 

  63. Oakenfull, D.: Aggregation of Saponins and bile acids in aqueous solution. Aust. J. Chem. 39, 1671–1683 (1986). https://doi.org/10.1071/CH9861671

    Article  CAS  Google Scholar 

  64. Hoque, M.A., Rahman, M.M., Mahbub, S., Hossain, M., Khan, M.A., Amin, M.R., Alqahtani, A.S., Ahmed, M.Z., Alqahtani, M.S., Almarfadi, O.M.: Spectroscopic and cloud point studies of the interaction and thermodynamics of ciprofloxacin hydrochloride + surfactants mixture in different solvents: effect of temperature and composition. Korean J. Chem. Eng. 38, 1487–1498 (2021). https://doi.org/10.1007/s11814-021-0786-4

    Article  CAS  Google Scholar 

  65. Batigöç, Ç., Akbaş, H., Boz, M.: Thermodynamics of non-ionic surfactant triton X-100-cationic surfactants mixtures at the cloud point. J. Chem. Thermodyn. 43, 1800–1803 (2011). https://doi.org/10.1016/j.jct.2011.06.005

    Article  CAS  Google Scholar 

  66. Alam, M.S., Kabir-ud-Din, Mandal, A.B.: Thermodynamics at the cloud point of phenothiazine drug chlorpromazine hydrochloride−additive systems. J. Chem. Eng. Data 55, 1693–1699 (2010). https://doi.org/10.1021/je9007487

    Article  CAS  Google Scholar 

  67. Islam, S.M.R., Alfaifi, S.Y.M., Jahan, I., Hasan, K.R., Alfakeer, M., Rub, M.A., Goni, M.A., Rana, S., Hoque, M.A., Islam, D.M.S.: Clouding of TX-100 and promethazine hydrochloride mixture: impacts of Na salts on the physicochemical parameters and interaction forces linked with studied components. J. Mol. Liq. 391, 123255 (2023). https://doi.org/10.1016/j.molliq.2023.123255

    Article  CAS  Google Scholar 

  68. Beesley, A.H., Evans, D.F., Laughlin, R.G.: Evidence for the essential role of hydrogen bonding in promoting amphiphilic self-assembly: measurements in 3-methylsydnone. J. Phys. Chem. 92, 791–793 (1988). https://doi.org/10.1021/j100314a039

    Article  CAS  Google Scholar 

  69. Islam, M.N., Mahmoud, M.H., Mahbub, S., Islam, M.R., Kumar, D., Ansari, A., Rana, S., Hoque, M.A., Kabir, S.E.: Physico-chemical parameters and interaction forces associated with the clouding phenomenon of triton X-100 and ceftriaxone sodium mixture: an understanding of the impacts of potassium salts. Colloid Polym. Sci. 302, 213–224 (2023). https://doi.org/10.1007/s00396-023-05188-w

    Article  CAS  Google Scholar 

  70. Kabir-ud-Din, Rub, M.A., Sheikh, M.S.: Cloud-point modulation of an amphiphilic drug with pharmaceutical excipients. J. Chem. Eng. Data 55, 5642–5652 (2010). https://doi.org/10.1021/je100665m

    Article  CAS  Google Scholar 

  71. Bergenstaahl, B.A., Stenius, P.: Phase diagrams of dioleoylPhosphatidylcholine with formaide, methylformamide and dimethylformamide. J. Phys. Chem. 91, 5944–5948 (1987). https://doi.org/10.1021/j100307a026

    Article  CAS  Google Scholar 

  72. Kabir-ud-Din, Khatoon, S., Naqvi, A.Z.: Nonelectrolyte-induced CP variation of TX-114+TBAB system. Acta Phys. Chim. Sin. 24, 1180–1184 (2008). https://doi.org/10.1016/S1872-1508(08)60052-2

    Article  CAS  Google Scholar 

  73. Robins, D.C., Thomas, I.L.: The effect of counterions on micellar properties of 2-dodecylamminoethanol salts: III. Solubilization studies. J. Colloid Inter. Sci. 26, 422–433 (1968). https://doi.org/10.1016/0021-9797(68)90289-0

    Article  Google Scholar 

  74. Khan, M.B., Hoque, M.A., Islam, D.M.S.: Physicochemical investigation of the clouding behavior and thermodynamics of p-tert-alkylphenoxy poly (oxyethylene) ether micelles in aqueous environment and in the presence of diols. J. Chem. Thermodyn. 89, 177–182 (2015). https://doi.org/10.1016/j.jct.2015.05.008

    Article  CAS  Google Scholar 

  75. Hoque, M.A., Khan, M.A., Hossain, M.D.: Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide. J. Chem. Thermodyn. 60, 71–75 (2013). https://doi.org/10.1016/j.jct.2013.01.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Researchers Supporting Project number (RSP2024R360), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

S.A.M., I.J., and S.M.A.A. did the experiments. J.M.K, S.R., M.M.R., M.A.H., M.A.G., and M.A.K. interpreted the results. S.R., M.A.H., and M.A.K. supervised the work and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Md. Anamul Hoque.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval and Consent to Participate

For human and animal research.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maya, S.A., Jahan, I., Khan, J.M. et al. Impacts of Short-Chain Alcohols on the Cloudy Development and Thermodynamics of Triton X-100 and Metformin Hydrochloride Drug Mixture. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01391-7

Keywords

Navigation