Skip to main content

Advertisement

Log in

Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The preconcentration of uranium VI (U(VI)) at trace levels in some real water and wastewater samples and its determination by spectrophotometry using a homogeneous solvent-based microextraction method, specifically in-situ solvent formation microextraction, were investigated. This microextraction method uses a unique task-specific ionic liquid (IL) as the specific complexing agent and/or extracting phase. A pyrrolidinium-based IL modified with (E)-5-(bromomethyl)-2-(pyridin-2-yldiazenyl) phenol as a task-specific IL (E)-1-(3-hydroxy-4-(pyridin-2-yldiazenyl) benzyl)-1-methylpyrrolidinium bromide (TSIL/Br) was successfully synthesized and characterized by 1HNMR and FTIR analyses. TSIL/Br chelated with U(VI) ions in the aqueous phase to form a hydrophilic [U(VI)-TSIL/Br2] complex with high efficiency. It was then converted to a hydrophobic [U(VI)-TSIL/(NTf2)2] complex through a counter-ion agent, such as bis(trifluoromethanesulfonyl)imide (\(\text{NTF}_2^-\)) for separation from the aqueous solution phase. This process eliminates the need for a separate complexing agent, because TSIL/Br acts simultaneously as both a complexing agent and an extracting solvent. In brief, the conditions of the microextraction process must be optimized for the analysis of real water samples. Under the optimum conditions, a preconcentration factor, detection limit, quantification limit, linear dynamic range, and relative standard deviation of 218, 1.62 ng·mL−1, 5.42 ng·mL−1, 20.0–450.0 ng·mL−1, and 2.47% (n = 10, 20 ng·mL−1) were obtained, respectively. Finally, to assess the method’s ability, it was successfully employed to determine the U(VI) ion content in various real water, wastewater and reference material samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Niazi, A., Khorshidi, N., Ghaemmaghami, P.: Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods. Spectrochim. Acta A 135, 69–75 (2015)

    Article  CAS  Google Scholar 

  2. Rozmaric, M., Ivsic, A.G., Grahek, Z.: Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection. Talanta 80, 352–362 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Hull, G., McNaghten, E.D., Sharrad, C.A., Martin, P.A.: Combined laser ablation-tuneable diode laser absorption spectroscopy and laser-induced breakdown spectroscopy for rapid isotopic analysis of uranium. Spectrochim. Acta B 190, 106378 (2022)

    Article  CAS  Google Scholar 

  4. Pinaeva, U., Dietz, T.C., Al Sheikhly, M., Balanzat, E., Castellino, M., Wade, T.L., Clochard, M.C.: Bis[2-(methacryloyloxy)ethyl] phosphate radio grafted into track-etched PVDF for uranium (VI) determination by means of cathodic stripping voltammetry. React. Funct. Polym. 142, 77–86 (2019)

    Article  CAS  Google Scholar 

  5. Fedotov, P.S., Fedyunina, N.N., Filosofov, D.V., Yakushev, E.A., Warot, G.: A novel combined countercurrent chromatography-inductively coupled plasma mass spectrometry method for the determination of ultratrace uranium and thorium in Roman lead. Talanta 192, 395–399 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Jamali, M.R., Assadi, Y., Shemirani, F., Milani-Hosseini, M.R., Rahnama-Kozani, R., Masteri-Farahani, M., Salavati-Niasari, M.: Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal. Chim. Acta 579, 68–73 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Benedik, L., Pilar, A.M., Prosen, H., Jacimovic, R., Povinec, P.P.: Determination of ultra-trace levels of uranium and thorium in electrolytic copper using radiochemical neutron activation analysis. Appl. Radiat. Isot. 175, 109801 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. Kumar-Pradhan, S., Ambade, B., Kumar-Tarafder, P.: An evolved fluorimetric determination of uranium in rock/mineral sample solutions containing hydrolysable elements such as Nb, Ta, Zr and Ti sequestered by bi-fluoride. Appl. Radiat. Isot. 160, 109126 (2020)

    Article  Google Scholar 

  9. Singh, B.P., Pandit, B., Bhardwaj, V.N.: Geochemical investigations for uranium in some areas of Jharkhand state using fission track technique. Phys. Proc. 80, 54–56 (2015)

    Article  CAS  Google Scholar 

  10. Dupuis, E., Isnard, H., Evette, C., Chartier, F.: Hyphenation of capillary electrophoresis with MC-ICP-MS-A novel tool for uranium age dating. Talanta 219, 121345 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. Danchana, K., de Souza, C.T., Palacio, E., Cerda, V.: Multi-syringe flow injection analysis for the spectrophotometric determination of uranium (VI) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Microchem. J. 150, 104148 (2019)

    Article  CAS  Google Scholar 

  12. Oguma, K., Suzuki, T., Saito, K.: Determination of uranium in seawater by flow-injection preconcentration on dodecylamidoxime-impregnated resin and spectrophotometric detection. Talanta 84, 1209–1214 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. El-Shwiniy, W.H., El-Desoky, S.I., Alrabie, A., El-wahaab, B.A.: Spectrophotometric determination of Zr(IV), Hg(II) and U(VI) in solution with their analytical applications: structural characterization and molecular docking of the solid complexes. Spectrochim. Acta A 279, 121400 (2022)

    Article  CAS  Google Scholar 

  14. Lima, T.M., Meira, L.A., Moreira, G.C., Dias, F.S.: Development of method for determination and preconcentration of uranium in water samples using XAD-4 resin loaded with Br-PADAP. J. Indian Chem. Soc. 99, 100256 (2022)

    Article  CAS  Google Scholar 

  15. Rodríguez, R., Avivar, J., Ferrer, L., Leal, L.O., Cerda, V.: Uranium monitoring tool for rapid analysis of environmental samples based on automated liquid–liquid microextraction. Talanta 134, 674–680 (2015)

    Article  PubMed  Google Scholar 

  16. Tesfaye, B., Gure, A., Asere, T.G., Molole, G.J.: Deep eutectic solvent-based dispersive liquid–liquid microextraction for determination of organochlorine pesticides in water and apple juice samples. Microchem. J. 195, 109428 (2023)

    Article  CAS  Google Scholar 

  17. Pu, X., Wang, X., Liu, Y., Di, X.: A novel deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of quinolones in environmental water samples. Microchem. J. 195, 109374 (2023)

    Article  CAS  Google Scholar 

  18. Montoro-Leal, P., García-Mesa, J.C., Siles Cordero, M.T., Lopez Guerrero, M.M., Vereda Alonso, E.: Magnetic dispersive solid phase extraction for simultaneous enrichment of cadmium and lead in environmental water samples. Microchem. J. 155, 104796 (2020)

    Article  CAS  Google Scholar 

  19. El-Deen, A.K., Magdy, G., Shimizu, K.: A reverse micelle-mediated dispersive liquid–liquid microextraction coupled to high-performance liquid chromatography for the simultaneous determination of agomelatine and venlafaxine in pharmaceuticals and human plasma. J. Chromatogr. A 1710, 464441 (2023)

    Article  CAS  PubMed  Google Scholar 

  20. Jahani, E., Movassaghghazani, M., Afshar-Mogaddam, M.R.: In-syringe homogenous liquid–liquid extraction combined with magnetic ionic liquid based dispersive liquid–liquid microextraction for the extraction of aflatoxin B1 from edible vegetable oil samples prior to HPLC-FLD analysis. Microchem. J. 197, 109690 (2024)

    Article  CAS  Google Scholar 

  21. Zhao, S., Hu, W., Zhang, D., Wang, X., Guo, G.: Packed in-tube solid-phase microextraction with mesoporous zirconium titanium oxides for highly efficient phosphopeptide enrichment and analysis. Microchem. J. 195, 109423 (2023)

    Article  CAS  Google Scholar 

  22. Caleb, J., Alshana, U., Ertas, N., Bakırdere, S.: Smartphone digital image colorimetry combined with dispersive solid-phase microextraction for the determination of boron in food samples. Food Chem. 426, 136528 (2023)

    Article  CAS  PubMed  Google Scholar 

  23. Afshar-Mogaddam, M.R., Farajzadeh, M.A., Mohebbi, A., Nemati, M.: Hollow fiber-liquid phase microextraction method based on a new deep eutectic solvent for extraction and derivatization of some phenolic compounds in beverage samples packed in plastics. Talanta 216, 120986 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. Valverde-Som, L., Herrero, A., Reguera, C., Sarabia, L.A., Ortiz, M.C.: A new multi-factor multi-objective strategy based on a factorial presence-absence design to determine polymer additive residues by means of head space-solid phase microextraction-gas chromatography-mass spectrometry. Talanta 253, 124021 (2023)

    Article  CAS  Google Scholar 

  25. Lopez-García, I., Munoz-Sandoval, M.J., Hernández-Cordoba, M.: Cloud point microextraction involving graphene oxide for the speciation of very low amounts of chromium in waters. Talanta 172, 8–14 (2017)

    Article  PubMed  Google Scholar 

  26. García-Mesa, J.C., Montoro-Leal, P., Maireles-Rivas, S., Lopez Guerrero, M.M., Vereda Alonso, E.: Sensitive determination of mercury by magnetic dispersive solid-phase extraction combined with flow-injection-cold vapour-graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom.Spectrom. 36, 892–899 (2021)

    Article  Google Scholar 

  27. Mehrabi, F., Ghaedi, M., Alipanahpour-Dil, E.: Magnetic nanofluid based on hydrophobic deep eutectic solvent for efficient and rapid enrichment and subsequent determination of cinnamic acid in juice samples: Vortex-assisted liquid-phase microextraction. Talanta 260, 124581 (2023)

    Article  CAS  PubMed  Google Scholar 

  28. Jamali, M.R., Tavakoli, M., Rahnama, R.: Development of ionic liquid-based in situ solvent formation microextraction for iron speciation and determination in water and food samples. J. Mol. Liq. 216, 666–670 (2016)

    Article  CAS  Google Scholar 

  29. Hosseini, M.: Simultaneous concentration and determination of cadmium and lead ions using in-situ solvent formation microextraction method based on functionalized ionic liquids. J. Anal. Chem. 76, 1189–1197 (2021)

    Article  CAS  Google Scholar 

  30. Hosseini, M., Dalali, N., Mohamadnejad, S.: A new mode of homogeneous liquid–liquid microextraction (HLLME) based on ionic liquids: in situ solvent formation microextraction (ISFME) for determination of lead. J. Chin. Chem. Soc. 59, 872–878 (2012)

    Article  CAS  Google Scholar 

  31. Hosseini, M.: Application of a new synthesized ionic liquid based on pyrrolidinium for microextraction of trace amounts of Cr(VI) ions in real water and wastewater samples. J. Water Chem. Technol. 45, 256–269 (2023)

    Article  Google Scholar 

  32. Hosseini, M., Naderi, A., Rezaei, A., Ghasemi, M.: Application of an in-situ solvent formation microextraction technique following functionalized ionic liquids (FILs) as green extractant for cadmium determination at trace levels in real and saline samples. Anal. Bioanal. Chem. Res. 9, 33–44 (2022)

    CAS  Google Scholar 

  33. Hosseini, M., Naderi, A., Fazli, Z.: Application of a task-specific functionalized ionic liquid (TSFIL) to simultaneous preconcentration of Cd and Pb as toxic pollutant in real water and saline samples by in-situ solvent formation microextraction technique. Iran. J. Anal. Chem. 7, 1–11 (2020)

    CAS  Google Scholar 

  34. Hosseini, M.: Sensitive determination trace amount of cadmium(II) as toxic pollutant in real and saline samples after concentration by in situ solvent formation microextraction technique and using eco-friendly material. Iran. J. Anal. Chem. 7, 41–49 (2020)

    CAS  Google Scholar 

  35. Wang, Q.F., Liang, L.J., Sun, J.B., Zhou, J.: Application of a reversed-phase ionic liquid dispersive liquid-liquid microextraction method for the extraction and preconcentration of domoic acid from urine samples. Heliyon 8, e10152 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shakil-Hussain, S.M., Adewunmi, A.A., Alade, O.S., Murtaza, M., Mahboob, A., Khan, H.J., Mahmoud, M., Kamal, M.S.: A review of ionic liquids: recent synthetic advances and oilfield applications. J. Taiwan Inst. Chem. Eng. 153, 105195 (2023)

    Article  Google Scholar 

  37. Nisar, M., Gondal, H.Y., Munir, S., Cheema, Z.M., Alhussain, S.A., Zaki, M.E.A.: New task-specific ionic liquids as bifunctional organocatalysts: synthesis, characterization, and computational insights. J. Saudi Chem. Soc. 27, 101687 (2023)

    Article  CAS  Google Scholar 

  38. Lledo, D., Grindlay, G., Serrano, R., Gras, L., Sansano, J.M.: Imidazolium-based task-specific ionic liquid for selective Ag, Cu, Pd and Pt determination by means of dispersive liquid–liquid microextraction and inductively coupled plasma optical emission spectrometry. Spectrochim. Acta B 204, 106672 (2023)

    Article  CAS  Google Scholar 

  39. Hosseini, M., Rezaei, A., Khoshfetrat, S.M.: Mechanism evaluation and extraction ability of lithium ion by in-situ solvent formation microextraction method (ISFME) using ionic liquids in magnesium-rich real aqueous media. Chem. Res. 4, 119–129 (2022)

    Google Scholar 

  40. Hosseini, M., Dalali, N., Moghaddasifar, S.: Ionic liquid for homogeneous liquid–liquid microextraction separation/preconcentration and determination of cobalt in saline samples. J. Anal. Chem. 69, 1141–1146 (2014)

    Article  CAS  Google Scholar 

  41. Hosseini, M., Dalali, N., Mohamadnejad, S., Jamali, R.: In situ solvent formation microextraction based on ionic liquids and 1-(2-hydroxynaphtalene-1-yl)ethane oxime for determination of zinc. J. Braz. Chem. Soc. 23, 78–84 (2012)

    CAS  Google Scholar 

  42. Hosseini, M., Dalali, N.: Use of ionic liquids for trace analysis of methyl tert-butyl ether in water samples using in situ solvent formation microextraction technique and determination by GC/FID. Sep. Sci. Technol. 49, 1889–1894 (2014)

    Article  CAS  Google Scholar 

  43. Vaezi, N., Dalali, N., Hosseini, M.: Nano-SiO2 modified by CTAB and oxime ligand for separation and preconcentration of trace amount of Cu(II) in real environmental samples. Iran. J. Anal. Chem. 4, 59–66 (2017)

    CAS  Google Scholar 

  44. Hosseini, M., Khoshfetrat, S.M., Panahimehr, M., Rezaei, A.: ISFME extraction of As species from some real water samples using an imidazolium-based task-specific ionic liquid (TSIL): synthesis and characterization. Sep. Sci. Technol. 59, 1–12 (2024)

    Article  Google Scholar 

  45. Souza, A.S., Siqueira, R.P., Prates, R.F., Bezerra, V.M., Rocha, D.S., Oliveira, M.V., Santos, D.B.: A dispersive liquid–liquid microextraction based on solidification of floating organic drop and spectrophotometric determination of uranium in breast milk after optimization using Box-Behnken design. Microchem. J. 134, 327–332 (2017)

    Article  CAS  Google Scholar 

  46. Dadfarnia, S., Haji-Shabani, A.M., Shakerian, F., Esfahani, G.S.: Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination. J. Hazard. Mater. 263, 670–676 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Biosensor and Energy Research Center, Ayatollah Boroujerdi University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Mehdi Hosseini]. The first draft of the manuscript was written by [Mehdi Hosseini]. The revised manuscript was edited with contributions from [Mehdi Hosseini and Seyyed Mehdi Khoshfatrat]. Additionally, the preparation of the uranium reference material and some supplementary analyses were conducted by [Seyyed Mehdi Khoshfetrat]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehdi Hosseini.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Khoshfetrat, S.M. Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01384-6

Keywords

Navigation