Skip to main content
Log in

Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The experimental measurement of density and enthalpy of mixture for two binary liquid mixtures of n-tridecane or n-tetradecane with decalin was reported in this paper. The measurements were conducted at a temperature range of 293.15–323.15 K and at 303.15 K using calorimeter C80. The mixtures were analyzed at various proportions, including the entire composition range and dilute solutions. The excess molar volume (VE) and excess molar enthalpy (HE) of mixtures were calculated and fitted using the Redlich–Kister equation. The paper observed the expansion phenomenon for the VE at all temperatures, including over the entire composition range and dilute solutions. Additionally, the HE exhibited endothermic behavior at the studied temperature range and composition range. The Prigogine–Flory–Patterson (PFP) theory was utilized to predict both thermodynamic properties, namely the VE and HE. The results obtained using the PFP theory were compared with those obtained using the Treszczanowicz and Benson association (TB) model for VE and with the NRTL, Wilson, and Flory models for HE. The PFP model, which employed a single-fitted parameter to describe VE, demonstrated satisfactory performance in predicting VE. Conversely, the Treszczanowicz and Benson association (TB) model yielded relatively poor results in fitting VE. However, the NRTL, Wilson, PFP, and Flory models exhibited good performance in predicting HE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pan, L.: Combustion properties of fuels and methods to improve them. In: Zou, J.-J., Zhang, X., Pan, L. (eds.) High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis, pp. 437–473. Wiley, Hoboken (2020). https://doi.org/10.1002/9783527823789.ch9

    Chapter  Google Scholar 

  2. Pires, A.P., Han, Y., Kramlich, J., Garcia-Perez, M.: Chemical composition and fuel properties of alternative jet fuels. BioResources 13(2), 2632–2657 (2018). https://doi.org/10.15376/biores.13.2.2632-2657

    Article  CAS  Google Scholar 

  3. Braun-Unkhoff, M., Kathrotia, T., Rauch, B., Riedel, U.: About the interaction between composition and performance of alternative jet fuels. CEAS Aeronaut. J. 7, 83–94 (2016). https://doi.org/10.1007/s13272-015-0178-8

    Article  Google Scholar 

  4. Eller, Z., Varga, Z., Hancsók, J.: Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking. Fuel 182, 713–720 (2016). https://doi.org/10.1016/j.fuel.2016.06.055

    Article  CAS  Google Scholar 

  5. Meeks, E., Naik, C.V., Puduppakkam, K.V., Modak, A., Egolfopoulos, F.N., Tsotsis, T., Westbrook, C.K.: Experimental and modeling studies of the combustion characteristics of conventional and alternative jet fuels. Final Report (2011).

  6. Outcalt, S., Laesecke, A., Freund, M.B.: Density and speed of sound measurements of Jet A and S-8 aviation turbine fuels. Energy Fuels. 23(3), 1626–1633 (2009). https://doi.org/10.1021/ef800888q

    Article  CAS  Google Scholar 

  7. Zehioua, R., Coquelet, C., Soo, C.B., Richon, D., Meniai, A.H.: Experimental and predicted excess molar enthalpies of some working pairs for absorption cycles. Thermochim. Acta. 495(1–2), 72–80 (2009). https://doi.org/10.1016/j.tca.2009.06.004

    Article  CAS  Google Scholar 

  8. Letcher, T., Spiteri, W., Scoones, B.: Excess enthalpies of decahydronaphthalene in cycloalkanes and in n-alkanes at two temperatures. J. Sol. Chem. 11, 423–434 (1982). https://doi.org/10.1007/BF00649041

    Article  CAS  Google Scholar 

  9. Yu, L., Wu, Z., Qiu, Y., Qian, Y., Mao, Y., Lu, X.: Ignition delay times of decalin over low-to-intermediate temperature ranges: rapid compression machine measurement and modeling study. Combust. Flame. 196, 160–173 (2018). https://doi.org/10.1016/j.combustflame.2018.06.014

    Article  CAS  Google Scholar 

  10. Yao, C., Mi, J., Jiang, P., Ye, C., Dai, Y., Guo, Y., Fang, W.: Densities and viscosities of the ternary mixtures of decalin (1)+ n-hexadecane (2)+ 1-butanol (3) and corresponding binary systems. J. Chem. Eng. Data. 68(4), 869–880 (2023). https://doi.org/10.1021/acs.jced.3c00003

    Article  CAS  Google Scholar 

  11. Huber, M.L., Lemmon, E.W., Diky, V., Smith, B.L., Bruno, T.J.: Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel. Energy Fuels. 22(5), 3249–3257 (2008). https://doi.org/10.1021/ef800314b

    Article  CAS  Google Scholar 

  12. Touazi, A.A., Didaoui, S., Khimeche, K., Benziane, M.: Thermophysical properties investigation of high-density jet fuel with alcohols additives. Int. J. Thermophys. 41(9), 130 (2020). https://doi.org/10.1007/s10765-020-02713-9

    Article  CAS  Google Scholar 

  13. Touazi, A.A., Didaoui, S., Khimeche, K., Benziane, M.: Measurement and prediction of thermophysical properties of binary mixtures of dicyclopentadiene with methylcyclohexane, toluene, and p-xylene. Thermochim. Acta. 685, 178536 (2020). https://doi.org/10.1016/j.tca.2020.178536

    Article  CAS  Google Scholar 

  14. Touazi, A.A., Khellili, E., Didaoui, S., Khimeche, K., Benziane, M.: Measurement and correlation of isobaric densities and viscosities for endo-dicyclopentadiene with hydrocarbons (C6–C8) at different temperatures. J. Thermal Anal. Calorimetry. 134, 1223–1242 (2018). https://doi.org/10.1007/s10973-018-7583-2

    Article  CAS  Google Scholar 

  15. Touazi, A.A., Didaoui, S., Khimeche, K., Rial, M., Moulai, S.A., Benziane, M.: Experimental and theoretical studies of volumetric and viscous properties of n-tetradecane with isomeric pentanols. J. Mol. Liquids. 327, 114860 (2021). https://doi.org/10.1016/j.molliq.2020.114860

    Article  CAS  Google Scholar 

  16. Maskey, S., Morrow, B.H., Gustafson, M.Z., Prak, D.J.L., Mikulski, P.T., Harrison, J.A.: Systematic examination of the links between composition and physical properties in surrogate fuel mixtures using molecular dynamics. Fuel. 261, 116247 (2020). https://doi.org/10.1016/j.fuel.2019.116247

    Article  CAS  Google Scholar 

  17. Dohnal, V., Řehák, K.: Determination of infinite dilution partial molar excess enthalpies and volumes for some ionic liquid precursors in water and methanol using tandem flow mixing calorimetry and vibrating-tube densimetry. J. Chem. Eng. Data 56(7), 3047–3052 (2011). https://doi.org/10.1021/je200093f

    Article  CAS  Google Scholar 

  18. Trampe, D.M., Eckert, A.C.: Calorimetric measurement of partial molar excess enthalpies at infinite dilution. J. Chem. Eng. Data. 36(1), 112–118 (1991). https://doi.org/10.1021/je00001a033

    Article  CAS  Google Scholar 

  19. Yu, J., Eser, S.: Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 2. Decalin and tetralin. Ind. Eng. Chem. Res. 37(12), 4601–4608 (1998). https://doi.org/10.1021/ie980302y

    Article  CAS  Google Scholar 

  20. Amara, A.B., Kaoubi, S., Starck, L.: Toward an optimal formulation of alternative jet fuels: Enhanced oxidation and thermal stability by the addition of cyclic molecules. Fuel. 173, 98–105 (2016). https://doi.org/10.1016/j.fuel.2016.01.040

    Article  CAS  Google Scholar 

  21. Wang, R., Li, G., Tang, H., Wang, A., Xu, G., Cong, Y., Li, N.: Synthesis of decaline-type thermal-stable jet fuel additives with cycloketones. ACS Sustain. Chem. Eng. 7(20), 17354–17361 (2019). https://doi.org/10.1021/acssuschemeng.9b04288

    Article  CAS  Google Scholar 

  22. Muldoon, J.A., Harvey, B.G.: Bio-based cycloalkanes: the missing link to high-performance sustainable jet fuels. ChemSusChem. 13(22), 5777–5807 (2020). https://doi.org/10.1002/cssc.202001641

    Article  CAS  PubMed  Google Scholar 

  23. Matos, J.S., Trenzado, J.L., Caro, M.N., Romano, E., Pérez, E.: Volumetric study of (an aliphatic methyl ester + heptane or nonane) at the temperature 298.15 K. J. Chem. Thermodyn. 26(8), 857–862 (1994). https://doi.org/10.1006/jcht.1994.1102

    Article  CAS  Google Scholar 

  24. Zhang, R., Chen, J., Mi, J.: Excess molar enthalpies for binary mixtures of different amines with water. J. Chem. Thermodyn. 89, 16–21 (2015). https://doi.org/10.1016/j.jct.2015.04.030

    Article  CAS  Google Scholar 

  25. Abe, A., Flory, P.: The thermodynamic properties of mixtures of small, nonpolar molecules. J. Am. Chem. Soc. 87(9), 1838–1846 (1965). https://doi.org/10.1021/ja01087a003

    Article  CAS  Google Scholar 

  26. Redlich, O., Kister, A.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40(2), 345–348 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  27. Zarei, H., Bohloor, F., Omidi, A.: Excess molar enthalpies of ethane-1,2-diamine plus primary and secondary alkanols (C1–C4) and correlation with Redlich-Kister, Wilson, NRTL and UNIQUAC models at T = 298 K. J. Chem. Thermodyn. (2017). https://doi.org/10.1016/j.jct.2016.12.036

    Article  CAS  Google Scholar 

  28. Wilson, G.M.: Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86(2), 127–130 (1964). https://doi.org/10.1021/ja01056a002

    Article  CAS  Google Scholar 

  29. Prigogine, I., Bellemans, A., Mathot, V.: The molecular theory of solutions, NorthHolland. Amsterdam (1957). https://doi.org/10.11316/butsuri1946.12.11.534

  30. Flory, P., Orwoll, R., Vrij, A.: Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons. J. Am. Chem. Soc. 86(17), 3507–3514 (1964). https://doi.org/10.1021/ja01071a023

    Article  CAS  Google Scholar 

  31. Zhang, C., Wang, R., Hui, X., Xue, X., Lin, Y., Sung, C.J.: Nonlinear threshold sooting index prediction method for surrogate formulation emulating sooting characteristics: a case study using RP-3 jet fuels. Energy Fuels. 34(8), 9990–9999 (2020). https://doi.org/10.1021/acs.energyfuels.0c00921

    Article  CAS  Google Scholar 

  32. Letinski, D.J., Parkerton, T.F., Redman, A.D., Connelly, M.J., Peterson, B.: Water solubility of selected C9–C18 alkanes using a slow-stir technique: comparison to structure–property models. Chemosphere. 150, 416–423 (2016). https://doi.org/10.1016/j.chemosphere.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez, V., Mattedi, S., Aznar, M.: Density, refraction index, and vapor–liquid equilibria of n-methyl-2-hydroxyethylammonium hexanoate plus (methyl acetate, ethyl acetate, or propyl acetate) at several temperatures. Ind. Eng. Chem. Res. 51(44), 14543–14554 (2012). https://doi.org/10.1021/ie302343v

    Article  CAS  Google Scholar 

  34. Kim, S.H., Roth, M.: Enthalpies of dilution and excess molar enthalpies of an aqueous solution of sulfuric acid. J. Chem. Eng. Data 46(1), 138–143 (2001). https://doi.org/10.1021/je0000221

    Article  CAS  Google Scholar 

  35. González, B., Dominguez, A., Tojo, J., Cores, R.: Dynamic viscosities of 2-pentanol with alkanes (Octane, Decane, and Dodecane) at three temperatures T (293.15, 298.15, and 303.15) K. New UNIFAC−VISCO interaction parameters. J. Chem. Eng. Data 49(5), 1225–1230 (2004). https://doi.org/10.1021/je034208m

    Article  CAS  Google Scholar 

  36. Larsen, B.L., Rasmussen, P., Fredenslund, A.: A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26(11), 2274–2286 (1987). https://doi.org/10.1021/ie00071a018

    Article  CAS  Google Scholar 

  37. Mohammadi, L., Omrani, A.: Density, refractive index, and excess properties of sulfolane and alkanediols binary mixtures at different temperatures. J. Therm. Anal. Calorim. 131, 1527–1543 (2018). https://doi.org/10.1007/s10973-017-6702-9

    Article  CAS  Google Scholar 

  38. Patterson, D., Delmas, G.: Corresponding states theories and liquid models. Discuss. Faraday Soc. 49, 98–105 (1970). https://doi.org/10.1039/DF9704900098

    Article  Google Scholar 

  39. Su, C., Zhu, C., Lai, T., Wang, T., Liu, X., He, M.: Temperature and pressure dependence of densities and viscosities for binary mixtures of methyl decanoate plus n-heptane. Thermochim. Acta. 670, 211–218 (2018). https://doi.org/10.1016/j.tca.2018.10.018

    Article  CAS  Google Scholar 

  40. Gahlyan, S., Verma, S., Rani, M., Maken, S.: Excess molar enthalpy of oxygenate+ hydrocarbon mixtures: application of Flory–Treszczanowicz–Benson model and graph theoretical approach. J. Mol. Liquids. 258, 142–146 (2018). https://doi.org/10.1016/j.molliq.2018.03.003

    Article  CAS  Google Scholar 

  41. Bhardwaj, U., Maken, S., Singh, K.: Excess molar enthalpies of 2-methylpropan-1-ol with aromatic hydrocarbons at 308.15 K in terms of an association model with a Flory contribution term. Fluid Phase Equilibria. 142(1–2), 205–213 (1998). https://doi.org/10.1016/S0378-3812(97)00227-6

    Article  CAS  Google Scholar 

  42. Gahlyan, S., Rani, M., Maken, S., Kwon, H., Tak, K., Moon, I.: Modeling of thermodynamic properties of an oxygenate+ aromatic hydrocarbon: excess molar enthalpy. J. Ind. Eng. Chem. 23, 299–306 (2015). https://doi.org/10.1016/j.jiec.2014.08.032

    Article  CAS  Google Scholar 

  43. Hu-Gang, Z., Zhi-Hua, L., Yi-Ling, T., Yuan, X., Liang, Y.: Molar volume, thermal expansivity and isothermal compressibility of trans-decahydronaphthalene up to 200MPa and 446K. Chin. Phys. 14(12), 2433 (2005). https://doi.org/10.1088/1009-1963/14/12/011

    Article  Google Scholar 

  44. Aicart, E., Tardajos, G., Peña, M.D.: Isothermal compressibility of cyclohexane+ n-tridecane and+ n-pentadecane at 298.15, 308.15, 318.15, and 333.15 K. J. Chem. Thermodyn. 13(8), 783–788 (1981). https://doi.org/10.1016/0021-9614(81)90067-7

    Article  CAS  Google Scholar 

  45. Lei, Q., Dai, Y., Wu, P., Fang, W., Guo, Y.: densities and viscosities for the ternary system of isopropylcyclohexane (1)+ n-tridecane (2)+ n-butanol (3) and corresponding binaries at T= 293.15 to 333.15 K. J. Chem. Eng. Data. 65(8), 3977–3987 (2020). https://doi.org/10.1021/acs.jced.0c00309

    Article  CAS  Google Scholar 

  46. Camin, D.L., Rossini, F.D.: Physical Properties of Fourteen API Research Hydrocarbons, C9 to C15. J. Phys. Chem 59(11), 1173–1179 (1955). https://doi.org/10.1021/j150533a014

    Article  CAS  Google Scholar 

  47. Luning Prak, D.J., Lee, B.G., Cowart, J.S., Trulove, P.C.: Density, viscosity, speed of sound, bulk modulus, surface tension, and flash point of binary mixtures of butylbenzene+ linear alkanes (n-decane, n-dodecane, n-tetradecane, n-hexadecane, or n-heptadecane) at 0.1 MPa. J. Chem. Eng. Data. 62(1), 169–187 (2017). https://doi.org/10.1021/acs.jced.6b00542

    Article  CAS  Google Scholar 

  48. Chi, H., Li, G., Guo, Y., Xu, L., Fang, W.: Excess molar volume along with viscosity, flash point, and refractive index for binary mixtures of cis-decalin or trans-decalin with C9 to C11 n-alkanes. J. Chem. Eng. Data. 58(8), 2224–2232 (2013). https://doi.org/10.1021/acs.jced.6b00542

    Article  CAS  Google Scholar 

  49. Shiohama, Y., Ogawa, H., Murakami, S., Fujihara, I.: Molar excess enthalpies of cis-decalin+ benzene,+ toluene,+ isooctane and+ heptane at 298.15 K. Fluid Phase Equilibria 32(3), 249–260 (1987). https://doi.org/10.1016/0378-3812(87)85057-4

    Article  CAS  Google Scholar 

  50. Miyake, Y., Baylaucq, A., Zéberg-Mikkelsen, C.K., Galliéro, G., Ushiki, H., Boned, C.: Stereoisomeric effects on volumetric properties under pressure for the system cis- + trans-decalin. Fluid Phase Equilibria. 252, 79–87 (2007). https://doi.org/10.1016/j.fluid.2006.12.011

    Article  CAS  Google Scholar 

  51. Pena, M.D., Tardajos, G.: Isothermal compressibility of cyclohexane + n-tridecane and + n-pentadecane at 298.15, 308.15, 318.15, and 333.15 K. M-786. J. Chem. Thermodyn. 13, 783–788 (1981). https://doi.org/10.1016/0021-9614(81)90067-7

    Article  Google Scholar 

  52. Pena, M.D., Tardajos, G.: Isothermal compressibility of n-alkanes and benzene. J. Chem. Thermodyn. 10, 19–24 (1978). https://doi.org/10.1016/0021-9614(78)90144-1

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ecole Supérieure du Matériel.

Author information

Authors and Affiliations

Authors

Contributions

Ahmed Amin TOUAZI and Abdelnour Boussadia wrote the main manuscript. Ahmed Amin TOUAZI, Abdelnour Boussadia, and Chalghoum Fateh prepared all figures and Tales. Ahmed Amin TOUAZI, Saéda Didaoui, Noureddine Nasrallah, and Mokhtar Benziane reviewed the manuscript.

Corresponding author

Correspondence to Ahmed Amin Touazi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touazi, A.A., Boussaadia, A., Didaoui, S. et al. Measurement and Modeling of Excess Molar Volume and Excess Enthalpy of n-Tridecane or n-Tetradecane with Decalin by Application of PFP Theory. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01374-8

Keywords

Navigation