Skip to main content
Log in

Insights into Interactions of N-Ethylpentylone Drug with Water and Biomacromolecules

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

One of the new synthetic cathinones that has a high tendency to replace ecstasy and other established synthetic drugs is N-ethylpentylone, (NEP), due to its high potency, stimulative, hedonic and hallucinatory effects. In order to examine the interactions of N-ethylpentylone, the apparent molar quantities, thermal expansion coefficient and the apparent molar volume at infinite dilution were calculated from the experimental measurements of the density of NEP aqueous solutions in different temperature and molality ranges, from T = (293.15 to 313.15) K and from m = (0.0590 to 0.0977) mol·kg−1, respectively. The taste of N-ethylpentylone was estimated by calculated values of apparent specific molar volume at infinite dilution and it was concluded that its taste in aqueous solutions is bitter. Also, using the spectrofluorimetric technique, an intermolecular deactivation of in situ formed ethidium bromide (EB) complex with DNA (EB-DNA) was investigated in the presence of N-ethylpentylone. Obtained results indicated good affinity and efficiency of NEP to substitute EB from the EB-DNA complex via intercalation mode. Using molecular docking, it was concluded that the binding energy obtained for NEP indicates its higher affinity to interact with DNA, compared to methamphetamine and amphetamine, but lower compared to ecstasy. The affinity of NEP to bind to bovine serum albumin (BSA) was also investigated and discussed. It is shown that N-ethylpentylone could be efficiently transported and distributed through the blood and cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. https://www.unodc.org/LSS/Page/NPS. Accessed 20 August 2022

  2. The challenge of new psychoactive substances, Global SMART Program, United Nations Office on Drugs and Crime, United Nations Publication, Austria (2013)

  3. Majchrzak, M., Celinski, R., Kus, P., Kowalska, T., Sajewicz, T.M.: The newest cathinone derivatives as designer drugs: an analytical and toxicological review. Forensic Toxicol. 36, 33–50 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Ikeji, C., Sittambalam, C.D., Camire, L.M., Weisman, D.S.: Fatal intoxication with N-ethylpentylone: a case report. J. Community Hosp. Intern. Med. Perspec. 8, 307–310 (2018)

    Article  Google Scholar 

  5. Capriola, M.: Synthetic cathinones abuse. Clin. Pharmacol. 5, 109–115 (2013)

    PubMed  PubMed Central  Google Scholar 

  6. Valente, M.J., de GuedesPinho, P., de LourdesBastos, M., Carvalho, F., Carvalho, M.: Khat and synthetic cathinones: a review. Arch. Toxicol. 88, 15–45 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. https://www.unodc.org/LSS/SubstanceGroup/Details/67b1ba69-1253-4ae9-bd93-fed1ae8e6802. Accessed 04 Jan 2022

  8. https://www.emcdda.europa.eu/publications/drug-profiles/synthetic-cathinones_en. Accessed 04 Jan 2022

  9. Critical review report: N-ethylnorpentylone, World Health Organisation, Geneva, 2018. https://www.who.int/medicines/access/controlled-substances/N-Ethylnorpentylone.pdf. Accessed 14 Jan 2022

  10. Wood, M.R., Bernal, I., Lalancette, R.A.: The hydrochloride hydrates of pentylone, and dibytilone and the hydrochloride salt of ephylone: the structures of three novel designer cathinones. Struct. Chem. 28, 1369–1376 (2017)

    Article  CAS  Google Scholar 

  11. Krotulski, A.J., Papsun, D.M., De Martinis, B.S., Mohr, A.L.A., Logan, B.K.: N-Ethyl pentylone (ephylone) intoxications: quantitative confirmation and metabolite identification in authentic human biological specimens. J. Anal. Toxicol. 42, 467–475 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. Eiden, C., Vuillot, O., Serre, A., Gambier, J., Berger, A., Mathieu, O., Nefau, T., Sebbane, M., Donnadieu-Rigole, H., Peyriere, H.: Acute psychiatric disorders related to fake cathinone: ephylone. Toxicol. Anal. Clin. 31, s64 (2019)

    Google Scholar 

  13. German, C.L., Fleckenstein, A.E., Hanson, G.R.: Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci. 97, 2–8 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. https://www.emcdda.europa.eu/system/files/publications/2473/TD0116348ENN.pdf. Accessed 21 Feb 2022

  15. Oliver, C.F., Palamar, J.J., Salomone, A., Simmons, S.J., Philogene-Khalid, H.L., Stokes-McCloskey, N., Rawls, S.M.: Synthetic cathinone adulteration of illegal drugs. Psychopharmacology 236, 869–879 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Zawadzki, M., Nowak, K., Szpot, P.: Fatal intoxication with N-ethylpentylone: a case report and method for determining N-ethylpentylone in biological material. Forensic Toxicol. 38, 255–263 (2020)

    Article  CAS  Google Scholar 

  17. Thirakul, P., Hair, L.S., Bergen, K.L., Pearson, J.M.: Clinical presentation, autopsy results and toxicology findings in an acute N-ethylpentylone fatality. J. Anal. Toxicol. 41, 342–346 (2017)

    CAS  PubMed  Google Scholar 

  18. Lin, Z., Chen, Y., Li, J., Xu, Z., Wang, H., Lin, J., Ye, X., Zhao, Z., Shen, Y., Zhang, Y., Zheng, S., Rao, Y.: Pharmacokinetics of N-ethylpentylone and its effect on increasing levels of dopamine and serotonin in the nucleus accumbens of conscious rats. Addict. Biol. 25, e12755 (2020)

    Article  PubMed  Google Scholar 

  19. Leong, H.S., Philp, M., Simone, M.P., Witting, K., Fu, S.: Synthetic cathinones induce cell death in dopaminergic SH-SY5Y cells via stimulating mitochondrial dysfunction. Int. J. Mol. Sci. 21, 1370–1390 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhattacharya, D.M., Kawadkar, D.V., Pandhurnekar, C.P., Wankhade, A.V., Pratap, U.R., Zodape, S.P.: Investigation of volumetric and acoustic properties of procainamide hydrochloride in aqueous binary and (water + amino acid) ternary mixtures at different temperatures. J. Chem. Eng. Data 62, 4083–4092 (2017)

    Article  CAS  Google Scholar 

  21. Vraneš, M., Tot, A., Panić, J., Tot, A., Papović, S., Gadžurić, S.: Structure making properties of 1-(2-hydroxyethyl)-3-methylimidazolium chloride ionic liquid. J. Chem. Thermodyn. 95, 174–179 (2016)

    Article  Google Scholar 

  22. Vraneš, M.B., Panić, J.J., Tot, A.S., Papović, S.M., Ostojić, S.M., Gadžurić, S.B.: The solvation properties and effect of D-fructose on the taste behavior of Citrus aurantium active components in aqueous solutions. Food Funct. 9, 5569–5579 (2018)

    Article  PubMed  Google Scholar 

  23. Sirajuddin, M., Badshah, S.A.A.: Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B. 124, 1–19 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Schrödinger Suite, Glide, Schrödinger, LLC; New York (2015)

  25. Boys, F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  26. Rostkowski, M., Olsson, M., Sondergaard, C., Jensen, J.: Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Bio. 11, 1–6 (2011)

    Google Scholar 

  27. Jorgensen, W.L., Tirado-Rives, J.: Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. 102, 6665–6670 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elokely, K.M., Doerksen, R.J.: Docking challenge: protein sampling and molecular docking performance. J. Chem. Inf. Model. 53, 1934–1945 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Masson, D.O.: XXVIII. Solute molecular volumes in relation to solvation and ionization. Lond. Edinb. Dublin Philos. Mag. J. Sci. 8, 218–235 (1929)

    Article  CAS  Google Scholar 

  30. Vraneš, M., Tot, A., Zec, N., Papović, S., Gadžurić, S.: Volumetric properties of binary mixtures of 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate with N-methylformamide, N-ethylformamide, N,N-dimethylformamide, N,N-dibutylformamide, and N,N-dimethylacetamide from (293.15 to 323.15) K. J. Chem. Eng. Data. 59, 3372–3379 (2014)

    Article  Google Scholar 

  31. Dožić, S., Vraneš, M., Gadžurić, S.: Volumetric properties of ammonium nitrate in N-methylformamide. J. Mol. Liq. 193, 189–193 (2014)

    Article  Google Scholar 

  32. Birch, G.G., Parke, S., Siertsema, R., Westwell, J.M.: Specific volumes and sweet taste. Food Chem. 56, 223–230 (1996)

    Article  CAS  Google Scholar 

  33. Birch, G.G., Parke, S., Siertsema, R., Westwell, J.M.: Importance of molar volumes and related parameters in sweet taste chemoreception. Pure Appl. Chem. 69, 685–692 (1997)

    Article  CAS  Google Scholar 

  34. Shiri, F., Hadidi, S., Rahimi-Nasrabadi, M., Ahmadi, F., Reza, G.M., Ehrlich, H.: Synthesis, characterization and DNA binding studies of a new ibuprofen–platinum(II) complex. J. Biomol. Struct. Dyn. 38(4), 1119–1129 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. Reis, A., Gonçalves, I., Neto, A.F., Santos, A., Kuca, K., Nepovimova, E., Neto, A.M.: Intermolecular interactions between DNA and Methamphetamine, Amphetamine, Ecstasy and their major metabolites. J. Biomol. Struct. Dyn. 36, 3047–3057 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. Brown, J.R.: Albumin structure, function and uses. In: Rosenoer, V.M., Oratz, M., Rothschild, M.A. (eds.), pp. 27–51. Pergamon Press, Oxford (1977)

Download references

Funding

This work is performed under financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68‬/2020-14‬/200125). The authors hereby declare no existing financial interests concerning these research studies.

Author information

Authors and Affiliations

Authors

Contributions

SB, MPM and NCB conducted measurements, sample preparation, calculation of volumetric properties and wrote the first draft of the manuscript; NJ measured interactions with biomacromolecules; AT performed molecular docking; NRS supplied chemicals and seizure illicit drug samples; JN, MV and SG interpreted results and reviewed manuscript.

Corresponding author

Correspondence to Slobodan Gadžurić.

Ethics declarations

Competing interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2776 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belić, S., Miličević, M.P., Vraneš, M. et al. Insights into Interactions of N-Ethylpentylone Drug with Water and Biomacromolecules. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01369-5

Keywords

Navigation