Skip to main content
Log in

Separation of Ethyl Acetate and Ethanol Azeotropic System by Acetate-Based Ionic Liquid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Three ionic liquids (ILs)(1-ethyl-2,3-dimethylimidazolium acetate, [EMMIM][AC]; tributyl-methylammonium acetate, [N4,4,4,1][AC]; and tetraethylammonium acetate, [N2,2,2,2][AC]) were chosen. The vapor–liquid equilibrium (VLE) data of ternary mixtures (acetate + ethanol + IL) were measured at 101.3 KPa. NRTL equation was used to correlate the data. From NRTL model, for [N2,2,2,2][AC], [EMMIM][AC], and [N4,4,4,1][AC], minimum mole fractions for completely eliminating azeotrope are 0.015, 0.020 and 0.022, respectively. From the average relative volatility and σ-profiles, it can be obtained that the separation ability order is [EMMIM][AC] > [N2,2,2,2][AC] > [N4,4,4,1][AC].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

x i :

Liquid phase mole fraction of component i

\(x^{\prime}_{i}\) :

Liquid phase mole fraction of component i excluding IL

P :

Total pressure in the equilibrium system

\({{P}}_{{i}}^{0}\) :

Saturated vapor pressure of component i

t :

Equilibrium temperature in °C

\({{A}}_{{i}},\) ,\({{B}}_{{i}}{, {C}}_{{i}}\) :

Antoine parameters of component i

x 3 :

Liquid phase mole fraction of IL

n :

Amount of experimental data points

exp:

Experimental values

calc:

Calculated values

K :

K-th data point

α 12 :

Relative volatility of component 1 to component 2

α ij :

Nonstochastic parameters of NRTL model

γ i :

The activity coefficient of component i

References

  1. Wang, J., Liu, W.B., Tan, S.Y.: Present situation and trend of technology of ethyl acetate. Appl. Sci. Technol. 30, 51–53 (2003)

    Google Scholar 

  2. Santacesaria, E., Carotenuto, G., Tesser, R., Serio, M.D.: Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts. Chem. Eng. 179, 209–220 (2012)

    Article  CAS  Google Scholar 

  3. Tu, C., Wu, Y., Ou, F.: Effect of 1,2-propanediol on the vapor–liquid equilibria of the ethyl acetate + ethanol system at 101.3 kPa. Fluid Phase Equilib. 130(1), 243–252 (1997)

    Article  CAS  Google Scholar 

  4. Li, Q., Zhang, J., Lei, Z., Zhu, J., Xing, F.: Isobaric vapor–liquid equilibrium for ethyl acetate + ethanol + 1-Ethyl-3-methylimidazolium tetrafluoroborate. J. Chem. Eng. Data 54, 193–197 (2009)

    Article  CAS  Google Scholar 

  5. Hu, X., Li, Y., Cui, D.: Separation of ethyl acetate and ethanol by room temperature ionic liquids with the tetrafluoroborate anion. J. Chem. Eng. Data 53, 427–433 (2008)

    Article  CAS  Google Scholar 

  6. Orchillés, A.V., Miguel, P.J., Vercher, E., Andreu, A.: Isobaric vapor-liquid equilibria for ethyl acetate + ethanol + 1- ethyl-3- methylimidazolium trifluoromethanesulfonate. J. Chem. Eng. Data 52, 2325–2330 (2007)

    Article  Google Scholar 

  7. Li, W., Zhang, L., Guo, H., Li, J., Zhang, T.: Effect of ionic liquids on the binary vapor – liquid equilibrium of ethyl acetate + methanol system at 101.3 kPa. J. Chem. Eng. Data 64, 34–41 (2019)

    Article  CAS  Google Scholar 

  8. Li, W., Yin, H., Guo, H., Li, J., Zhang, T.: Separation abilities of three acetate-based ionic liquids for benzene-methanol mixture through vapor-liquid equilibrium experiment at 101.3 kPa. Fluid Phase Equilib. 492, 80–87 (2019)

    Article  CAS  Google Scholar 

  9. Zhang, Z., Zhang, A., Wu, K., Zhang, Q., Hu, A., Li, W.: Separation of ethyl acetate and 2-propanol azeotropic mixture using ionic liquids as entrainers. Fluid Phase Equilib. 429, 331–338 (2016)

    Article  CAS  Google Scholar 

  10. Li, W., Xu, N., Xu, H., Zhang, A., Zhang, Z., Zhang, T.: Isobaric vapor–liquid equilibrium for ternary mixtures of acetone + methanol + ionic liquids at 101.3 kPa. Fluid Phase Equilib. 442, 20–27 (2017)

    Article  CAS  Google Scholar 

  11. Orchillés, A.V., Miguel, P.J., Vercher, E., Martínez-Andreu, A.: Ionic liquids as entrainers in extractive distillation: Isobaric vapor–liquid equilibria for acetone + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. J. Chem. Eng. Data 52, 141–147 (2007)

    Article  Google Scholar 

  12. Zhang, Z., Lu, R., Wang, C., Zhang, Q., Li, W.: Separation of the dimethyl carbonate + ethanol mixture using imidazolium-based ionic liquids as entrainers. J. Chem. Eng. Data 2, 1705–1714 (2020)

    Article  Google Scholar 

  13. Zhu, W., Li, Q., Liu, B., Cai, X., Fan, Z.: Effect of imidazolium-based ionic liquid on vapor–liquid equilibria of 2-propanol + acetonitrile binary system at 101.3 kPa. Fluid Phase Equilib. 409, 383–387 (2016)

    Article  CAS  Google Scholar 

  14. Perèiro, A.B., Araújo, J.M.M., Esperan, J.M.M.S.S., Marrucho, I.M., Rebelo: L.P.N. Ionic liquids in separations of azeotropic systems – A review. Chem. Thermodyn. 46, 2–28 (2012)

    Article  Google Scholar 

  15. Lei, Z., Li, C., Chen, B.: Extractive distillation: A review. Sep. Purif. Rev. 32(2), 121–213 (2003)

    Article  CAS  Google Scholar 

  16. Zhu, R., Taheri, M., Lei, Z.: Extension of the COSMO-UNIFAC thermodynamic model. Ind. Eng. Chem. Res. 59, 1693–1701 (2020)

    Article  CAS  Google Scholar 

  17. Dong, Y., Huang, S., Guo, Y., Lei, Z.: COSMO-UNIFAC model for ionic liquids. AIChE J. 66(1), e16787 (2019)

    Article  Google Scholar 

  18. Dong, Y., Zhu, R., Guo, Y., Lei, Z.A.: A united chemical thermodynamic model: : COSMO-UNIFAC.  Ind. Eng. Chem. Res. 57, 15954–15958 (2018)

    Article  CAS  Google Scholar 

  19. Tan, X., Chen, L., Li, X., Xie, F.: Effect of anti-solvents on the characteristics of regenerated cellulose from 1-ethyl-3-methylimidazolium acetate ionic liquid. Int. J. Biol. Macromol. 124, 314–320 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. Dhanalakshmi, J., Sai, P., Balakrishnan, A.R.: Effect of inorganic salts on the isobaric vapor–liquid equilibrium of the ethyl acetate–ethanol system. J. Chem. Eng. Data 58, 3, 560–569 (2013)

    Article  CAS  Google Scholar 

  21. Li, Q., Zhang, J., Lei, Z., Zhu, J., Zhu, J., Huang, X.: Selection of ionic liquids as entrainers for the separation of ethyl acetate and ethanol. Ind. Eng. Chem. Res. 48(19), 9006–9012 (2009)

    Article  CAS  Google Scholar 

  22. Li, R., Cui, X., Zhang, Y., Feng, T., Cai, J.: Vapor–liquid equilibrium and liquid–liquid equilibrium of ethyl acetate + ethanol + 1-ethyl-3-methylimidazolium acetate. J. Chem. Eng. Data 57, 911–917 (2012)

    Article  CAS  Google Scholar 

  23. Zhang, D., Deng, Y., Li, C., Chen, J.: Separation of ethyl acetate–ethanol azeotropic mixture using hydrophilic ionic liquids. Ind. Eng. Chem. Res. 47, 1995–2001 (2008)

    Article  CAS  Google Scholar 

  24. Zhang, Z., Wu, K., Zhang, Q., Zhang, T., Zhang, D., Yang, R., Li, W.: Separation of ethyl acetate and ethanol azeotrope mixture using dialkylphosphates-based ionic liquids as entrainers. Fluid Phase Equilib. 454, 91–98 (2017)

    Article  CAS  Google Scholar 

  25. Yue, K., Zhou, W.: Isobaric vapor–liquid equilibrium for ethyl acetate + ethanol with ionic liquids [MMIM][DMP] and [OMIM][PF6] as entrainers. J. Mol. Liq. 348, 118404 (2022)

    Article  CAS  Google Scholar 

  26. Hunsmann, W.: Verdampfungsgleichgewicht von ameisensaure/essigsaure-und von tetrachlorkohlenstoff/perchlorathylen-gemi-schen. Vapourisation equilibria of formic acid/acetic acid and carbon tetrachloride/perchloroethylene mixtures. Chem. Irg Tech. 39, 1142–1145 (1967)

    CAS  Google Scholar 

  27. Chen, X., Yang, B., Abdeltawab, A., Al-Deyab, A.S., Yu, S., Yong, G.: Isobaric vapor – liquid equilibrium for acetone + methanol + phosphate ionic liquids. J. Chem. Eng. Data 60, 612–620 (2015)

    Article  CAS  Google Scholar 

  28. Zhang, Z., Lu, R., Zhang, Q., Chen, J., Li, W.: COSMO-RS based ionic liquid screening for the separation of acetonitrile and ethanol azeotropic mixture. Chem. Technol. Biot. 95(12), 91–98 (2020)

    CAS  Google Scholar 

  29. Andreatta, A.E., Charnley, M.P., Brennecke, J.F.: Using ionic liquids to break the ethanol–ethyl acetate azeotrope. ACS Sustain. Chem. Eng. 10, 3435–3444 (2015)

    Article  Google Scholar 

  30. Dhanalakshmi, J., Sai, P., Balakrishnan, A.R.: Study of ionic liquids as entrainers for the separation of methyl acetate–methanol and ethyl acetate–ethanol systems using the COSMO-RS Model. J. Ind. Eng. Chem. Res. 52(46), 16396–16405 (2013)

    Article  CAS  Google Scholar 

  31. Xu, Y., Li, T., Peng, C., Liu, H.: Influence of C2-H of Imidazolium-based ionic liquids on the Interaction and vapor–liquid equilibrium of ethyl acetate + ethanol system: [Bmim]BF4 vs [Bmmim]BF4. Ind. Eng. Chem. Res. 8, 1–32 (2015)

    Google Scholar 

  32. Fadia, G., Hassiba, B., Shen, W.: Separation of ethanol – water mixture by extractive distillation using pyridinium-based ionic liquid 1-ethyl-3-methylpyridinium ethylsulfate. Chem. Eng. Process. 173, 108815 (2022)

    Article  CAS  Google Scholar 

  33. Zhang, L., Qiao, B., Qi, R., Ji, J.: Isobaric vapor – liquid equilibria for water + ethanol + ethyl acetate + 1-butyl-3-methylimidazolium acetate at low water mole fractions. J. Chem. Eng. Data 53, 7, 1595–1601 (2008)

    Article  CAS  Google Scholar 

  34. Winnert, J.M., Devi, V.K.P.J., Brennecke, J.F.: Using dialkylimidazolium ionic liquids to break the methanol + methyl acetate azeotrope. Ind. Eng. Chem. Res. 58, 50, 22633–22639 (2019)

    Article  CAS  Google Scholar 

  35. Li, W., Fan, X., Guo, H., He, X., Wang, L., Zhang, T.: Isobaric vapor–liquid equilibrium for 2-butanone + ethanol + acetate-based ionic liquids at 101.3 kPa. Fluid Phase Equilib. 552, 113298 (2022)

    Article  CAS  Google Scholar 

  36. Li, H., Sun, G., Li, D., Xi, L., Zhou, P., Li, X., Zhang, J., Gao, X.: Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid. Green Energy Environ. 6, 329–338 (2021)

    Article  CAS  Google Scholar 

  37. Tamal, B., Manish, K.S., Ashok, K.: Prediction of binary VLE for imidazolium based ionic liquid systems using COSMO-RS. Ind. Eng. Chem. Res. 45(9), 3207–3219 (2006)

    Article  Google Scholar 

  38. Li, J., Yang, X., Chen, K., Zheng, Y., Peng, C., Liu, H.: Sifting ionic liquids as additives for separation of acetonitrile and water azeotropic mixture using the COSMO-RS method. Ind. Eng. Chem. Res. 51(27), 9376–9385 (2012)

    Article  CAS  Google Scholar 

  39. Kang, J.W., Diky, V., Chirico, R.D., Magee, J.W., Muzny, C.D., Abdulagatov, I., Kazakov, A.F., Frenkel, M.: Quality assessment algorithm for vapor–liquid equilibrium data. J. Chem. Eng. Data 55, 3631–3640 (2010)

    Article  CAS  Google Scholar 

  40. Islam, M.R., Chen, C.C.: COSMO-SAC sigma profile generation with conceptual segment concept. Ind. Eng. Chem. Res. 54, 4441–4454 (2015)

    Article  CAS  Google Scholar 

  41. Renon, H., Prausnitz, J.M.: Local composition thermodynamic excess functions for liquid mixtures. Aiche. 14(1), 135–144 (1968)

    Article  CAS  Google Scholar 

  42. Taha, M.: Designing new mass-separating agents based on piperazine-containing Good’s buffers for separation of propanols and water azeotropic mixtures using COSMO-RS method. Fluid Phase Equilib. 425, 40–46 (2016)

    Article  CAS  Google Scholar 

  43. Berg, L.: Separation of ethyl acetate from ethanol by azeotropic distillation: US, US5993610 A[P]. (1999)

  44. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)

    Article  Google Scholar 

  45. Susial, P., Sosa-Rosario, A., Rios-Santana, R.: Vapor liquid equilibria for ethyl acetate + methanol at (0.1, 0.5 and 0.7) MPa measurements with a new ebulliometer. J. Chem. Eng. Data 55(12), 5701–5706 (2010)

    Article  CAS  Google Scholar 

  46. Klamt, A., Jonas, V., Bürger, T., Lohrenz, J.C.W.: Refinement and parametrization of COSMO-RS. J. Phys. Chem. A. 102(26), 5074–5085 (1998)

    Article  CAS  Google Scholar 

  47. Gutiérrez, J.P., Meindersma, G.W., Haan, A.D.: COSMO-RS-based ionic-liquid selection for extractive distillation processes. Ind. Eng. Chem. Res. 51(35), 11518–11529 (2012)

    Article  Google Scholar 

  48. Shu, W., Lin, S., Watanasiri, S., Chen, C.: Use of GAMESS/COSMO program in support of COSMO-SAC model applications in phase equilibrium prediction calculations. Fluid Phase Equilib. 276, 37–45 (2009)

    Article  Google Scholar 

  49. Domańska, U., Marciniak, A., Kròlikowska, M., Arasimowicz, M.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-3-methyl-pyridinium trifluoromethanesulfonate. J. Chem. Eng. Data 55, 3208–3211 (2010)

    Article  Google Scholar 

  50. Marciniak, A.: Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilib. 294, 213–233 (2010)

    Article  CAS  Google Scholar 

  51. Qin, H., Wang, Z., Zhou, T., Song, Z.: Comprehensive evaluation of COSMO-RS for predicting ternary and binary ionic liquid-containing vapor–liquid equilibria. Ind. Eng. Chem. Res. 60, 48, 17761–17777 (2021)

    Article  CAS  Google Scholar 

  52. Andrew, B., Craig, C.: Student understanding of liquid – vapor phase equilibrium. J. Chem. Educ. 89(6), 707–714 (2012)

    Article  Google Scholar 

  53. Besler, B.H., Merz, K.M., Kollman, P.A.: Atomic charges derived from semiempirical methods. J. Comput. Chem. 11(4), 431–439 (1990)

    Article  CAS  Google Scholar 

  54. Yaws, C., Yang, H.: To estimate vapor pressure easily. J. Hydrocarbon Processing. 68, 65–70 (1989)

    CAS  Google Scholar 

  55. Stephenson, R.M., Malanowski (eds.): S. Handbook of the Thermodynamics of Organic Compounds. Springer Netherlands Dordrecht (1987)

  56. Li, W., Guan, T., Cao, Y., Zhang, Y., Zhang, T.: Isobaric vapor–liquid equilibrium for toluene-methanol system including three ionic liquids with acetate anion at 101.3 kPa. Fluid Phase Equilib. 506(15), 112412 (2020)

    Article  CAS  Google Scholar 

  57. Aniya, V., De, D., Singh, A., Satyavathi, B.: Isobaric phase equilibrium of tert-butyl alcohol + glycerol at local and subatmospheric pressures, volumetric properties, and molar refractivity from 303.15 to 333.15 K of tert-butyl alcohol + glycerol, tert-butyl alcohol + water, and water + glycerol. J. Chem. Eng. Data 61, 1850–1863 (2016)

    Article  CAS  Google Scholar 

  58. Wu, T., Zhang, Q., Xin, H., Li, S., Song, T., Zhang, Z.: Study on the selective separation of methanol and methyl ethyl ketone from the azeotropic system using ionic liquids and their separation mechanism. J. Mol. Liq. 34, 117571 (2021)

    Article  Google Scholar 

  59. Wu, T., Yin, C., Zhang, A., Xin, H., Lv, M., Lin, T., Lu, Y., Wang, Y., Song, T., Li, S., Zhang, Q., Zhang, Z.: Study on the isobaric vapor–liquid equilibrium behavior of the methanol + methyl ethyl ketone system using ionic liquids as extractants and model correlation. J. Chem. Eng. Data 67(9), 2367–2377 (2022)

    Article  CAS  Google Scholar 

  60. Wisniak, J., Ortega, J., Fernández, L.: A fresh look at the thermodynamic consistency of vapour-liquid equilibria data. J. Chem. Thermodyn. 105, 385–395 (2016)

    Article  Google Scholar 

  61. Ma, Y., Gao, J., Li, M., Zhu, Z., Wang, Y.: Isobaric vapour–liquid equilibrium measurements and extractive distillation process for the azeotrope of (N,N-dimethylisopropylamine + acetone). J. Chem. Thermodyn. 122, 154–161 (2018)

    Article  CAS  Google Scholar 

  62. Liu, X., Zhang, Y., Li, M., Li, X., Li, G., Wang, Y., Gao, J.: Isobaric vapor – liquid equilibrium for three binary systems of ethyl acetate + propyl acetate, ethyl acetate + propylene carbonate,and propyl acetate + propylene carbonate at 101.3 kPa. J. Chem. Eng. Data 63(5), 1588–1595 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Science Foundation of China (Project No. 22278272), the Scientific Research Project of the Education Department of Liaoning Province (Project No. LJKZ0426), the National Science Foundation of China (Project No. 21978173).

Author information

Authors and Affiliations

Authors

Contributions

WL is in charge of the data processing, LZ is in charge of the experiment, XH is in charge of the equipment debugging, QN assisted the experiment, and TZ provides the funds for the experiment and in charge of the analysis and discussion of the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, L., He, X. et al. Separation of Ethyl Acetate and Ethanol Azeotropic System by Acetate-Based Ionic Liquid. J Solution Chem (2024). https://doi.org/10.1007/s10953-023-01361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-023-01361-5

Keywords

Navigation