Skip to main content
Log in

Complexation Between Aluminum Ion and Glycolic Acid Under Acidic Condition

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The complexation between Al3+ ([Al(H2O)6]3+) and glycolic acid (GA, C2H4O3) which has a carboxyl group and a hydroxyl group in a molecule was investigated under acidic condition using 27Al NMR, 13C NMR and ESI–MS techniques. The five peaks including a peak due to Al3+ were observed in 27Al NMR spectra for the mixed solution of Al3+ and GA, suggesting the existence of at least four Al-GA complexes. The results of NMR and ESI–MS measurements revealed that GA and Al3+ can form one monodentate complex (AlGA2+) and three bidentate complexes (AlGA+, AlGA2, and AlGA33−) complexes. From the deconvolution of 27Al NMR spectra and pKa value of GA, the conditional formation constants (log10 K) of each complex (GA/Al molar ratio of 25 in mixed solution) can be determined to be 0.94 (AlGA2+), − 0.96 (AlGA+), − 0.77 (AlGA2) and − 2.21 (AlGA33−), respectively. In addition, the overall formation constant of three bidentate complex at pH 3 was also calculated to be − 1.65.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vance, G.F., Stevebson, F.J., Sikora, F.J., Sposito, G. (eds.): The Environmental Chemistry of Aluminum. Lewis Publishers, New York (1996)

    Google Scholar 

  2. Ma, J.F., Ryan, P.R., Delhaize, E.: Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278 (2001). https://doi.org/10.1016/S1360-1385(01)01961-6

    Article  CAS  PubMed  Google Scholar 

  3. Mhatre, S.N., Iyer, R.K., Moorthy, P.N.: Characterization of aluminium complexes in tea extract. Magn. Reson. Chem. 31, 169–175 (1993). https://doi.org/10.1002/mrc.1260310203

    Article  CAS  Google Scholar 

  4. Zheng, S.J., Ma, J.F., Matsumoto, H.: High aluminum resistance in buckwheat. Plant. Physiol. 117, 745–751 (1998). https://doi.org/10.1104/pp.117.3.745

    Article  PubMed Central  Google Scholar 

  5. Morita, A., Horie, H., Fujii, Y., Takatsu, S., Watanabe, N., Yagi, A., Yokota, H.: Chemical forms of aluminum in xylem sap of tea plant (Camellia sinensis L.). Phytochemistry 65, 2775–2780 (2004). https://doi.org/10.1016/j.phytochem.2004.08.043

    Article  CAS  PubMed  Google Scholar 

  6. Huang, D., Gong, Z., Chen, X., Wang, H., Tan, R., Mao, Y.: Transcriptomic responses to aluminum stress in tea plant leaves. Sci. Rep. 11, 5800 (2021). https://doi.org/10.1038/s41598-021-85393-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pellet, D.M., Grunes, D.L., Kochian, L.V.: Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196, 788–795 (1995). https://doi.org/10.1007/BF01106775

    Article  CAS  Google Scholar 

  8. Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants. Plant Physiol. 107, 315–321 (1995). https://doi.org/10.1104/pp.107.2.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao, Z., Liang, Y.: Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice. Plant Phys. Biochem. 175, 12–22 (2022). https://doi.org/10.1016/j.plaphy.2022.02.003

    Article  CAS  Google Scholar 

  10. Hodson, M., Evans, D.E.: Aluminium-silicon interactions in higher plants: an update. J. Exp. Botany 71(21), 6719–6729 (2020). https://doi.org/10.1093/jxb/eraa024

    Article  CAS  Google Scholar 

  11. Corbillon, M.S., Olazabal, M.A., Madariaga, J.M.: Potentiometric study of aluminium-fluoride complexation equilibria and definition of the thermodynamic model. J. Solut. Chem. 37, 567–579 (2008). https://doi.org/10.1007/s10953-008-9257-3

    Article  CAS  Google Scholar 

  12. Cardiano, P., Giacobello, F., Giuffrè, O., Sammartano, S.: Thermodynamics of Al3+-thiocarboxylate interaction in aqueous solution. J. Mol. Liq. 222, 614–621 (2016). https://doi.org/10.1016/j.molliq.2016.07.077

    Article  CAS  Google Scholar 

  13. Cardiano, P., Giacobello, F., Giuffrè, O., Sammartano, S.: Thermodynamics and spectroscopic study on Al3+-polycarboxylate interaction in aqueous solution. J. Mol. Liq. 232, 45–54 (2017). https://doi.org/10.1016/j.molliq.2017.02.047

    Article  CAS  Google Scholar 

  14. Torre, G.D., Mujika, J.I., Formoso, E., Matito, E., Ramos, M.J., Lopez, X.: Tuning the affinity of catechols and salicylic acids towards Al(III): characterization of Al—chelator interactions. Dalton Trans. 47, 9592–9607 (2018). https://doi.org/10.1039/C8DT01341A

    Article  PubMed  Google Scholar 

  15. Etou, M., Kurisaki, T., Okaue, Y., Wakita, H., Yokoyama, T.: 13C and 27Al NMR study of complexation between aluminium ion and simple dicarboxylic acids under an acidic condition: new peak assignments of 27Al NMR spectra of mixed solutions of Al3+ and simple dicarboxylic acids. Anal. Sci. 29, 843–484 (2013). https://doi.org/10.2116/analsci.29.843

    Article  CAS  PubMed  Google Scholar 

  16. Yokoyama, T., Abe, H., Kurisaki, T., Wakita, H.: 13C and 27Al NMR and potentiometric study on the interaction between aluminium ions and quinolic acids in acidic aqueous solutions. Anal. Sci. 15, 969–972 (1999). https://doi.org/10.2116/analsci.15.969

    Article  CAS  Google Scholar 

  17. Rubini, P., Lakatos, A., Champmartin, D., Kiss, T.: Speciation and structural aspects of interactions of Al(III) with small biomolecules. Coord. Chem. Rev. 228, 137–152 (2002). https://doi.org/10.1016/S0010-8545(01)00467-2

    Article  CAS  Google Scholar 

  18. Boily, J.F., Qafoku, O., Felmy, A.R.: A potentiometric, spectrophotometric and pitzer ion-interaction study of reaction equilibria in the aqueous H+-Al3+, H+-oxalate and H+-Al3+-oxalate systems up to 5 mol·dm-3 NaCl. J. Solut. Chem. 36, 1727–1743 (2007). https://doi.org/10.1007/s10953-007-9203-9

    Article  CAS  Google Scholar 

  19. Fakhraei, H., Driscoll, C.T.: Proton and aluminum binding properties of organic acids in surface waters of the northeastern U. S. Environ. Sci. Technol. 49, 2939–2947 (2015). https://doi.org/10.1021/es504024u

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi, T., Nanzyo, M., Hiradate, S.: Aluminum status of synthetic Al-humic substance complexes and their influence on plant root growth. Soil Sci. Plant Nutr. 53, 115–124 (2007). https://doi.org/10.1111/j.1747-0765.2007.00114.x

    Article  CAS  Google Scholar 

  21. Lambert, J., Buddrus, J., Burba, P.: Evaluation of conditional stability constants of dissolved aluminum/humic substance complexes by means of 27Al nucleat magnetic resornance. Fresenius J. Anal. Chem. 351, 83–87 (1995). https://doi.org/10.1007/BF00324295

    Article  CAS  Google Scholar 

  22. Pourpoint, F., Templier, J., Anquetil, C., Vezin, H., Trébosc, J., Trivelli, X., Chabaux, F., Pokrovsky, O.S., Prokushkin, A.S., Amoureux, J.P., Lafon, O., Derenne, S.: Probing the aluminum complexation by Siberian riverine organic matter using solid-state DNP-NMR. Chem. Geol. 452, 1–8 (2017). https://doi.org/10.1016/j.chemgeo.2017.02.004

    Article  CAS  Google Scholar 

  23. Leenheer, J.A., Wershaw, R.L., Reddy, M.M.: Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures. Environ. Sci. Technol. 29, 393–398 (1995). https://doi.org/10.1021/es00002a015

    Article  CAS  PubMed  Google Scholar 

  24. Leenheer, J.A., Wershaw, R.L., Reddy, M.M.: Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures. Environ. Sci. Technol. 29, 399–405 (1995). https://doi.org/10.1021/es00002a016

    Article  CAS  PubMed  Google Scholar 

  25. Atalay, Y.B., Carbonaro, R.F., Di Toro, D.M.: Distribution of proton dissociation constants for model humic and fulvic acid molecules. Environ. Sci. Technol. 43, 3626–3631 (2009). https://doi.org/10.1021/es803057r

    Article  CAS  PubMed  Google Scholar 

  26. Nimmagadda, R.D., AcRae, C.: Characterisation of the backbone structures of several fulvic acids using a novel selective chemical reduction method. Org. Geochem. 38, 1061–1072 (2007). https://doi.org/10.1016/j.orggeochem.2007.02.016

    Article  CAS  Google Scholar 

  27. Baigorri, R., Fuentes, M., Conzález-Gaitaro, G., Marcía-Mina, J., Almendros, G., González-Vila, F.J.: Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: gray humic acid, brown humic acid, and fulvic acid. J. Agric. Food. Chem. 57, 3266–3272 (2009). https://doi.org/10.1021/jf8035353

    Article  CAS  PubMed  Google Scholar 

  28. Kurisaki, T., Etou, M., Okaue, Y., Wakita, H., Yokoyama, T.: Acid-base behavior and Al3+ complex formation of synthesized 2,3-dihydrohyterephthalic acid (DHTPA) at pH 3 as a model compound of Inogashira fulvic acid (IFA). Polyhedron 72, 135–139 (2014). https://doi.org/10.1016/j.poly.2014.02.006

    Article  CAS  Google Scholar 

  29. Etou, M., Masaki, Y., Tsuji, Y., Saito, T., Bai, S., Nishida, I., Okaue, Y., Yokoyama, T.: Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution. Anal. Sci. 27, 111–115 (2011). https://doi.org/10.2116/analsci.27.111

    Article  CAS  PubMed  Google Scholar 

  30. Yokoyama, T., Abe, H., Kurisaki, T., Wakita, H.: 13C and 27Al NMR study on the interaction in acidic aqueous solution between aluminium ion and tiron, salicylic acid and phthalic acid: as model compounds with functional groups of fulvic acid. Anal. Sci. 13, 425–428 (1997). https://doi.org/10.2116/analsci.13.Supplement_425

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The measurement of ESI-MS was made at the Institute of Chemical Materials and Engineering, Kyushu University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ME and TT. The first draft of the manuscript was written by ME and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mayumi Etou or Takushi Yokoyama.

Ethics declarations

Conflict of interest

The authors hereby declare no existing financial interests concerning these research studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etou, M., Taketatsu, T., Okaue, Y. et al. Complexation Between Aluminum Ion and Glycolic Acid Under Acidic Condition. J Solution Chem 52, 1318–1328 (2023). https://doi.org/10.1007/s10953-023-01319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01319-7

Keywords

Navigation