Skip to main content
Log in

Insight into the Effect of Physicochemical Properties on CO2 Absorption Behavior of Imidazole Anion-Functionalized Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Three imidazole anion-functionalized ionic liquids (IFILs) with tributylethylphosphonium ([P4442]+) cation and imidazolate ([Im]), 4-methylimidazolate ([4-MeIm]), or 4-bromimidazolate ([4-BrIm]) anions were prepared to study the effect of physicochemical properties on CO2 absorption behavior. Density (ρ), viscosity (η), and speed of sound (u) of the studied IFILs were measured, and molecular volume (Vm), standard entropy (S0), lattice energy (UPOT), and isentropic compressibility coefficient (κs) were calculated accordingly. CO2 absorption behavior of [P4442][Im] at T = 313.15–333.15 K and p = 0.2 and 1 bar was investigated as an example. The results show that with the increase of temperature, ρ, η, u, and UPOT decrease, while Vm, S0, and κs increase, due to a decrease in electrostatic interaction correspondingly. The orders of ρ, u, η, Vm, and S0 values are as follows: [P4442][Im] < [P4442][4-MeIm] < [P4442][4-BrIm], while UPOT and κs are in reverse order. Interestingly, CO2 capture capacity of IFILs is approximately linear with η or κs. Due to low η and high κs, CO2 absorption capacity of [P4442][Im] is almost independent of temperature and partial pressure, as high as 0.90 mol CO2/mol IL at 333.15 K and 0.2 bar, indicating that [P4442][Im] has potential applications for CO2 absorption at high temperature and low pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu, X., Tang, X., Chen, T., Xu, Y., Luo, X., Lu, Y., Wang, X., Qin, D., Zhang, L.: Understanding of the interactions between azole-anion-based ionic liquids and 2-methyl-3-butyn-2-ol from the experimental perspective: the cage effect. Phys. Chem. Chem. Phys. 24, 12550–12562 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. Liu, J., Tang, X., Lu, H., Xu, Y.: Insight into the interactions between azole-anion-based ionic liquids and propargylic alcohol: influence on the carboxylative cyclization of propargylic alcohol with carbon dioxide. ACS Sustain. Chem. Eng. 9, 5050–5060 (2021)

    Article  CAS  Google Scholar 

  3. Wang, C., Luo, X., Luo, H., Jiang, D.-E., Li, H., Dai, S.: Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem. Int. Ed. 50, 4918–4922 (2011)

    Article  CAS  Google Scholar 

  4. Zhao, Y., Wu, Y., Yuan, G., Hao, L., Gao, X., Yang, Z., Yu, B., Zhang, H., Liu, Z.: Azole-anion-based aprotic ionic liquids: functional solvents for atmospheric CO2 transformation into various heterocyclic compounds. Chem. Asian J. 11, 2735–2740 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Candia-Lomelí, M., Covarrubias-Garcia, I., Aizpuru, A., Arriaga, S.: Preparation and physicochemical characterization of deep eutectic solvents and ionic liquids for the potential absorption and biodegradation of styrene vapors. J. Hazard. Mater. 441, 129835 (2023)

    Article  PubMed  Google Scholar 

  6. Chen, T., Wu, X., Xu, Y.: Effects of the structure on physicochemical properties and CO2 absorption of hydroxypyridine anion-based protic ionic liquids. J. Mol. Liq. 362, 119743 (2022)

    Article  CAS  Google Scholar 

  7. Zema, Z.A., Chen, T., Shu, H., Xu, Y.: Tuning the CO2 absorption and physicochemical properties of K+ chelated dual functional ionic liquids by changing the structure of primary alkanolamine ligands. J. Mol. Liq. 344, 117983 (2021)

    Article  CAS  Google Scholar 

  8. Shi, G., Zhao, H., Chen, K., Lin, W., Li, H., Wang, C.: Efficient capture of CO2 from flue gas at high temperature by tunable polyamine-based hybrid ionic liquids. AIChE J. 66, e16779 (2020)

    Article  CAS  Google Scholar 

  9. Wenny, M.B., Molinari, N., Slavney, A.H., Thapa, S., Lee, B., Kozinsky, B., Mason, J.A.: Understanding relationships between free volume and oxygen absorption in ionic liquids. J. Phys. Chem. B. 126, 1268–1274 (2022)

    Article  CAS  PubMed  Google Scholar 

  10. Ramkumar, V., Gardas, R.L.: Thermophysical properties and carbon dioxide absorption studies of guanidinium-based carboxylate ionic liquids. J. Chem. Eng. Data 64, 4844–4855 (2019)

    Article  CAS  Google Scholar 

  11. García-Gutiérrez, P., Jacquemin, J., Mccrellis, C., Dimitriou, I., Taylor, S.F.R., Hardacre, C., Allen, R.W.K.: Techno-economic feasibility of selective CO2 capture processes from biogas streams using ionic liquids as physical absorbents. Energy Fuels 30, 5052–5064 (2016)

    Article  Google Scholar 

  12. He, Y., Wang, J., Chen, T., Xu, Y.: Effects of substituents on carbon capture properties of imidazole anion-functionalized ionic liquids. Energy Environ. Prot. 36, 60–65 (2022). (in Chinese)

    Google Scholar 

  13. Krishnan, A., Gopinath, K.P., Vo, D.V.N., Malolan, R., Nagarajan, V.M., Arun, J.: Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environ. Chem. Lett. 18, 2031–2054 (2020)

    Article  CAS  Google Scholar 

  14. Yang, J., Lu, X., Gui, J., Xu, W.: A new theory for ionic liquids—The interstice Model Part 1. The density and surface tension of ionic liquid EMISE. Green. Chem. 6, 541–543 (2004)

    Article  CAS  Google Scholar 

  15. Ma, D., Zhu, C., Fu, T., Ma, Y., Yuan, X.: Performance and pressure drop of CO2 absorption into task-specific and halide-free ionic liquids in a microchannel. AIChE J. 68,(2022)

    Article  CAS  Google Scholar 

  16. Chen, J., Chen, L., Xu, Y.: Properties of pure 1, 1, 3, 3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K. J. Chem. Thermodyn. 88, 110–120 (2015)

    Article  CAS  Google Scholar 

  17. Wang, J., Li, Y., Guo, C., Zhao, Y., Tong, J.: Viscosity and electrical conductivity of ether-functionalized ionic liquids-[C1OC2mim][OAc], [C1OC2mim][Pro] and [C2OC2mim][Pro]. J. Mol. Liq. 349, 118200 (2022)

    Article  CAS  Google Scholar 

  18. Mu, L., He, H.: Prediction of standard absolute entropies for gaseous organic compounds. Chemom Intell. Lab. Syst. 112, 41–47 (2012)

    Article  CAS  Google Scholar 

  19. Zhang, D., Li, B., Hong, M., Kong, Y., Tong, J.: Synthesis and characterization of physicochemical properties of new ether-functionalized amino acid ionic liquids. J. Mol. Liq. 304, 112718 (2020)

    Article  CAS  Google Scholar 

  20. Wang, J., Jiang, H., Liu, Y., Hu, Y.: Density and surface tension of pure 1-ethyl-3-methylimidazolium L-lactate ionic liquid and its binary mixtures with water. J. Chem. Thermodyn. 43, 800–804 (2011)

    Article  CAS  Google Scholar 

  21. Glasser, L.: Lattice and phase transition thermodynamics of ionic liquids. Thermochim. Acta 421, 87–93 (2004)

    Article  CAS  Google Scholar 

  22. Wu, K., Chen, Q., He, C.: Speed of sound of ionic liquids: Database, estimation, and its application for thermal conductivity prediction. AIChE J. 60, 1120–1131 (2014)

    Article  CAS  Google Scholar 

  23. Keshapolla, D., Srinivasarao, K., Gardas, R.L.: Influence of temperature and alkyl chain length on physicochemical properties of trihexyl- and trioctylammonium based protic ionic liquids. J. Chem. Thermodyn. 133, 170–180 (2019)

    Article  CAS  Google Scholar 

  24. Das, I., Swami, K.R., Gardas, R.L.: Influence of alkyl substituent on thermophysical properties and CO2 absorption studies of diethylenetriamine-based ionic liquids. J. Mol. Liq. 371, 121114 (2023)

    Article  CAS  Google Scholar 

  25. Zhang, X., Bao, D., Huang, Y., Dong, H., Zhang, X., Zhang, S.: Gas–liquid mass-transfer properties in CO2 absorption system with ionic liquids. AIChE J. 60, 2929–2939 (2014)

    Article  CAS  Google Scholar 

  26. Sánchez, L.G., Meindersma, G.W., De Haan, A.B.: Kinetics of absorption of CO2 in amino-functionalized ionic liquids. Chem. Eng. J. 16, 1104–1115 (2011)

    Article  Google Scholar 

  27. Zhang, S., Wang, X., Yao, J., Li, H.: Electron paramagnetic resonance studies of the chelate-based ionic liquid in different solvents. Green Energy Environ. 5, 341–346 (2020)

    Article  Google Scholar 

  28. Huang, Y., Cui, G., Zhao, Y., Wang, H., Li, Z., Dai, S., Wang, J.: Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids. Angew Chem. Int. Ed. 56, 13293–13297 (2017)

    Article  CAS  Google Scholar 

  29. Suo, X., Fu, Y., Do-Thanh, C.L., Qiu, L.-Q., Jiang, D.-E., Mahurin, S.M., Yang, Z., Dai, S.: CO2 chemisorption behavior in conjugated carbanion-derived ionic liquids via carboxylic acid formation. J. Am. Chem. Soc. 144, 21658–21663 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. Gutowski, K.E., Maginn, E.J.: Amine-functionalized task-specific ionic liquids: A mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. J. Am. Chem. Soc. 130, 14690–14704 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. Luo, X., Fan, X., Shi, G., Li, H., Wang, C.: Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond. J. Phys. Chem. B. 120, 2807–2813 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. Goodrich, B.F., de la Fuente, J.C., Gurkan, B.E., Lopez, Z.K., Price, E.A., Huang, Y., Brennecke, J.F.: Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. J. Phys. Chem. B. 115, 9140–9150 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Brennecke, J.F., Gurkan, B.E.: Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1, 3459–3464 (2010)

    Article  CAS  Google Scholar 

  34. Wang, C., Guo, Y., Zhu, X., Cui, G., Li, H., Dai, S.: Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination Chem. Commun. 48, 6526–6528 (2012)

    CAS  Google Scholar 

  35. Yang, Z.-Z., Jiang, D.-E., Zhu, X., Tian, C., Brown, S., Do-Thanh, C.L., He, L.-N., Dai, S.: Coordination effect-regulated CO2 capture with an alkali metal onium salts/crown ether system. Green Chem. 16, 253–258 (2014)

    Article  CAS  Google Scholar 

  36. Shu, H., Xu, Y.: Tuning the strength of cation coordination interactions of dual functional ionic liquids for improving CO2 capture performance. Int. J. Greenhouse Gas Control. 94, 102934 (2020)

    Article  CAS  Google Scholar 

  37. Shiflett, M.B., Niehaus, A.M.S., Yokozeki, A.: Separation of N2O and CO2 using room-temperature ionic liquid [bmim][BF4]. J. Phys. Chem. B. 115, 3478–3487 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Shiflett, M.B., Drew, D.W., Cantini, R.A., Yokozeki, A.: Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate. Energy Fuels. 24, 5781–5789 (2010)

    Article  CAS  Google Scholar 

  39. Bates, E.D., Mayton, R.D., Ntai, I., Davis, J.H.: CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 124, 926–927 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. Qu, Y., Lan, J., Chen, Y., Sun, J.: Amino acid ionic liquids as efficient catalysts for CO2 capture and chemical conversion with epoxides under metal/halogen/cocatalyst/solvent-free conditions. Sustain. Energy Fuels. 5, 2494–2503 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 21978172) and Undergraduate Scientific and Technological Innovation Project of Shaoxing University.

Author information

Authors and Affiliations

Authors

Contributions

JW, YH, and TC performed the experiments. YX: wrote the manuscript and  BC wrote the manuscript.

Corresponding authors

Correspondence to Yingjie Xu or Bin Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 559.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., He, Y., Chen, T. et al. Insight into the Effect of Physicochemical Properties on CO2 Absorption Behavior of Imidazole Anion-Functionalized Ionic Liquids. J Solution Chem 52, 1255–1272 (2023). https://doi.org/10.1007/s10953-023-01314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01314-y

Keywords

Navigation