Skip to main content
Log in

Effect of Organic Carbonate Solvent Composition on the Volumetric and Viscometric Behavior of Linear Ethers

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Density and viscosity measurements were carried out at 25 °C (298.15 K) on six binary di(or tri)glyme/organic carbonate (dimethylcarbonate, ethylene carbonate or propylene carbonate) systems and on multicomponent systems containing di(or tri)glyme/ organic carbonate mixtures. The effect of the organic carbonate composition on the excess weight volume (VwE), the deviation viscosity (\(\Delta \eta\)), the partial weight and apparent weight volumes of glymes is interpreted in terms of competitive interactions and/or of differences in size or shape between glymes and organic carbonates. In addition, a model, based on viscosity data, is developed for the first time to determine the hydrodynamic volumes of glymes. The comparison of hydrodynamic volumes with Van der Waals volumes makes it possible to highlight and quantify the possible interactions between glymes and pure organic carbonates, and the association of triglyme molecules in organic carbonate EC/PC mixtures. The effect of LiPF6 and NaPF6 salts at 1 mol⋅L−1 in the glyme/organic carbonate mixtures appears to significantly reduce the volumes of glymes. By this, the strong interactions between salts and glymes are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Engelbrecht, L. de V., Mocci, F., Wang, Y., Perepelytsya, S., Vasiliu, T., Laaksonen, A.: Molecular perspective on solutions and liquid mixtures from modelling and experiment. Springer Proc. Phys. 266, 53–84 (2022)

  2. Jouyban, A., Acree, W.E.: A single model to represent physico-chemical properties of liquid mixtures at various temperatures. J. Mol. Liq. 323, 115054 (2021). https://doi.org/10.1016/j.molliq.2020.115054

    Article  CAS  Google Scholar 

  3. Lenahan, F.D., Zhai, Z., Kankanamge, C.J., Klein, T., Fröba, A.P.: Viscosity and interfacial tension of ternary mixtures consisting of linear alkanes, alcohols, and/or dissolved gases using surface light scattering and equilibrium molecular dynamics simulations. Int. J. Thermophys. 43, 116 (2022). https://doi.org/10.1007/s10765-022-03040-x

    Article  CAS  Google Scholar 

  4. Devi, N.G., Srinivasa Rao, N.V.N.B., Ramachandran, D., Nagalakshmi, V., Sunila Rani, P.: Viscometric study on binary liquid mixtures of propiophenone with aniline and N-alkyl substituted anilines, at 30315 to 31815 K. Rasayan J. Chem. 15, 292–301 (2022). https://doi.org/10.31788/RJC.2022.1516663

    Article  CAS  Google Scholar 

  5. Saini, A., Verma, S., Harshavardhan, A., Dey, R.: Two new models for viscosity prediction of binary, ternary and higher order liquid mixtures. RSC Adv. 6, 113657–113662 (2016). https://doi.org/10.1039/C6RA24532C

    Article  CAS  Google Scholar 

  6. Tang, S., Zhao, H.: Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry. RSC Adv. 4, 11251–11287 (2014). https://doi.org/10.1039/C3RA47191H

    Article  CAS  PubMed  Google Scholar 

  7. No, S.-Y.: Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation-a review. Renew. Sustain. Energy Rev. 40, 1108–1125 (2014). https://doi.org/10.1016/j.rser.2014.07.127

    Article  CAS  Google Scholar 

  8. Devi, B.K., Naraparaju, S., Soujanya, C., Gupta, S.D.: Green chemistry and green solvents: an overview. Curr. Green Chem. 7, 314–325 (2020). https://doi.org/10.2174/2213346107999200709132815

    Article  CAS  Google Scholar 

  9. Shaikh, A.-A.G., Sivaram, S.: Organic carbonates. Chem. Rev. 96, 951–976 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. Kandpal, C., Pandey, J.D., Dey, R., Kumar Singh, A., Kumar, V., Singh.: Comparative study of viscosity, diffusion coefficient, thermal conductivity and Gibbs free energy for binary liquid mixtures at varying temperatures. J. Mol. Liq. 333, 115858 (2021). https://doi.org/10.1016/j.molliq.2021.115858

    Article  CAS  Google Scholar 

  11. González, J.A., Martínez, F.J., Sanz, L.F., Hevia, F., de la Fuente, I.G., Cobos, J.C.: Volumetric and viscosimetric measurements for methanol + CH3-O-(CH2CH2O)n-CH3 (n = 2, 3, 4) mixtures at (293.15–303.15) K and atmospheric pressure: application of the ERAS model. J. Solut. Chem. 49, 332–352 (2020).https://doi.org/10.1007/s10953-020-00964-6

  12. Rivas, M.A., Iglesias, T.P.: On permittivity and density of the systems triglyme + (dimethyl or diethyl carbonate) and formulation of ∆ε in terms of volume or mole fraction. J. Chem. Thermodyn. 40, 1120–1130 (2008)

    Article  CAS  Google Scholar 

  13. Vani Latha, S., Little Flower, G., Rayapa Reddy, K., Nageswara Rao, C.V., Ratnakar, A.: Densities, ultrasonic velocities, excess properties and IR spectra of binary liquid mixtures of organic esters (ethyl lactate, some organic carbonates). J. Solut. Chem. 46, 305–330 (2017). https://doi.org/10.1007/s10953-016-0567-6

  14. Chaudoy, V., Ghamouss, F., Jacquemin, J., Houdbert, J.C., Tran-Van, F.: On the performances of ionic liquid-based electrolytes for Li-NMC batteries. J. Solut. Chem. 44, 769–789 (2015). https://doi.org/10.1007/s10953-015-0315-3

  15. Bodenes, L., Darwiche, A., Monconduit, L., Martinez, H.: The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J. Power Sources 273, 14–24 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.037

    Article  CAS  Google Scholar 

  16. Eshetu, G.G., Grugeon, S., Kim, H., Jeong, S., Wu, L., Gachot, G., Laruelle, S., Armand, M., Passerini, S.: ChemSusChem 9, 462–471 (2016). https://doi.org/10.1002/cssc.201501605

  17. Spieweck, F., Bettin, H.: Review: Solid and liquid density determination. Tech. Mess. 59, 285–292 (1992). https://doi.org/10.1524/teme.1992.59.78.285

    Article  CAS  Google Scholar 

  18. Sinclair, C.D., Vincent, C.A.: Derivation of partial molal volumes in binary systems. J. Chem. Soc. Faraday Trans. I 70, 1926–1933 (1974). https://doi.org/10.1039/F19747001926

    Article  CAS  Google Scholar 

  19. Einstein, A.: Investigations on the theory of the Brownian movement. In: Fürth, R., Cowper, A.D. (eds.) Translator. Dover, New York (1956)

    Google Scholar 

  20. McPhie, M.G., Daivis, P.J., Snook, I.K.: Viscosity of a binary mixture: approach to the hydrodynamic limit. Phys. Rev. E 74, 031201 (2006). https://doi.org/10.1103/PhysRevE.74.031201

    Article  CAS  Google Scholar 

  21. Wajnryb, E., Dahler, J.S.: The viscosity of a moderately dense, polydisperse suspension of spherical particles. Physica A 253, 77–104 (1998). https://doi.org/10.1016/S0378-4371(97)00682-1

    Article  CAS  Google Scholar 

  22. Batchelor, G.K.: The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97–117 (1977). https://doi.org/10.1017/S0022112077001062

    Article  Google Scholar 

  23. Haruki, S., Sukenaga, S., Saito, N., Nakashima, K.: Viscosity estimation of spherical particles dispersed suspension. High Tem. Mater. Proc. 30, 405–409 (2011)

    CAS  Google Scholar 

  24. Mader, H.M., Llewellin, E.W., Mueller, S.P.: The rheology of two-phase magmas: a review and analysis. J. Volcanol. Geotherm. Res. 257, 135–158 (2013)

    Article  CAS  Google Scholar 

  25. Fort, R.J., Moore, W.R.: Viscosities of binary liquid mixtures. Trans. Faraday Soc. 62, 1112–1119 (1966). https://doi.org/10.1039/TF9666201112

    Article  CAS  Google Scholar 

  26. Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)

    Article  CAS  PubMed  Google Scholar 

  27. Katti, P.K., Chaudhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964). https://doi.org/10.1021/je60022a047

    Article  CAS  Google Scholar 

  28. Heric, E.L., Brewer, J.G.: Viscosity of some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data 12, 574–583 (1967). https://doi.org/10.1021/je60035a028

    Article  CAS  Google Scholar 

  29. Hind, R.K., McLaughlin, E., Ubbelohde, A.R.: Structure and viscosity of liquids camphor + pyrene mixtures. Trans. Faraday Soc. 56, 328–330 (1960). https://doi.org/10.1039/TF9605600328

    Article  CAS  Google Scholar 

  30. Tamura, M., Kurata, M.: On the viscosity of binary mixture of liquids. Bull. Chem. Soc. Jpn. 25, 32–38 (1952). https://doi.org/10.1246/bcsj.25.32

    Article  Google Scholar 

  31. Novak, L.T.: Relationship between the intrinsic viscosity and Eyring-NRTL viscosity model parameters. Ind. Eng. Chem. Res. 43, 2602–2604 (2004). https://doi.org/10.1021/ie040010z

    Article  CAS  Google Scholar 

  32. Sadeghi, R.: Segment-based Eyring-Wilson viscosity model for polymer solutions. J. Chem. Thermodyn. 37, 445–448 (2005). https://doi.org/10.1016/j.jct.2004.10.009

    Article  CAS  Google Scholar 

  33. Horita, K., Sawatari, N., Yoshizaki, T., Einaga, Y., Yamakawa, H.: Excluded-volume effects on the transport coefficients of oligo- and poly(dimethylsiloxane)s in dilute solution. Macromolecules 28, 4455–4463 (1995). https://doi.org/10.1021/ma00117a014

    Article  CAS  Google Scholar 

  34. Huglin, M.B., Sokro, M.B.: Characterization of oligo- poly(dimethylsiloxanes) and their solutions in toluene. Polymer 21, 651–658 (1980). https://doi.org/10.1016/0032-3861(80)90323-7

    Article  CAS  Google Scholar 

  35. Dodgson, K., Semlyen, J.A.: Studies of cyclic and linear poly(dimethylsiloxanes): 1 Limiting viscosity number-molecular weight relationships. Polymer 18, 1265–1268 (1977). https://doi.org/10.1016/0032-3861(77)90291-9

    Article  CAS  Google Scholar 

  36. Barry, A.J.: Viscometric investigation of dimethylsiloxane polymers. J. Appl. Phys. 17, 1020–1024 (1946). https://doi.org/10.1063/1.1707670

    Article  CAS  Google Scholar 

  37. Mark, J.E.: Polymer data handbook. Oxford University Press, New York (1999)

    Google Scholar 

  38. Bates, O.K.: Thermal conductivity of liquid silicones. Ind. Eng. Chem. 41, 1966–1968 (1949)

    Article  CAS  Google Scholar 

  39. Ancherbak, S., Yasnou, V., Mialdun, A., Shevtsova, V.: Coexistence curve, density, and viscosity for the binary system of perfluorohexane + silicone oil. J. Chem. Eng. Data 63, 3008–3017 (2018). https://doi.org/10.1021/acs.jced.8b00278

    Article  CAS  Google Scholar 

  40. Sakai, K., Iijima, S., Ikeda, R., Endo, T., Yamazaki, T., Yamashita, Y., Natsuisaka, M., Sakai, H., Abe, M., Sakamoto, K.: Water-in-oil emulsions prepared by peptide-silicone hybrid polymers as active interfacial modifier: effects of silicone oil species on dispersion stability of emulsions. J. Oleo Sci. 62, 505–511 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. Di Nicola, G., Pierantozzi, M., Tomassetti, S., Coccia, G.: Surface tension calculation from liquid viscosity data of silanes. Fluid Phase Equil. 463, 11–17 (2018). https://doi.org/10.1016/j.fluid.2018.01.005

    Article  CAS  Google Scholar 

  42. Chopra, D., Kontopoulou, M., Vlassopoulos, D., Hatzikiriakos, S.G.: Interrelations between rheology and phase behaviour in partially miscible blends: the case of polydimethylsiloxane/polyethylmethylsiloxane (PDMS/PEMS). Can. J. Chem. Eng. 80, 1057–1064 (2002). https://doi.org/10.1002/cjce.5450800607

    Article  CAS  Google Scholar 

  43. Hunter, M.J., Warrick, E.L., Hyde, J.F., Currie, C.C.: Organosilicon polymers. II. The open chain dimethylsiloxanes with trimethylsiloxy end groups. J. Am. Chem. Soc. 68, 2284–2290 (1946)

    Article  CAS  Google Scholar 

  44. Pal, A., Kumar, A.: Excess molar volumes, viscosities, and refractive indices of diethylene glycol dimethyl ether with dimethyl carbonate, diethyl carbonate, and propylene carbonate at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 43, 143–147 (1998). https://doi.org/10.1021/je9701902

    Article  CAS  Google Scholar 

  45. Pal, A., Dass, G., Kumar, A.: Excess molar volumes, viscosities, and refractive indices of triethylene glycol dimethyl ether with dimethyl carbonate, diethyl carbonate, and propylene carbonate at 298.15 K. J. Chem. Eng. Data 43, 738–741 (1998). https://doi.org/10.1021/je980016t

    Article  CAS  Google Scholar 

  46. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004). https://doi.org/10.1021/cr030203g

    Article  CAS  PubMed  Google Scholar 

  47. Reis, J.C.R., Iglesias, T.P.: Kirkwood correlation factors in liquid mixtures from an extended Onsager–Kirkwood–Fro ̈hlich equation. Phys. Chem. Chem. Phys. 13, 10670–10680 (2011). https://doi.org/10.1039/c1cp20142e

    Article  CAS  PubMed  Google Scholar 

  48. Conesa, A., Shen, S., Coronas, A.: Liquid densities, kinematic viscosities, and heat capacities of some ethylene glycol dimethyl ethers at temperatures from 283.15 to 423.15 K. Int. J. Thermophys. 19, 1343–1358 (1998)

    Article  CAS  Google Scholar 

  49. Solvents, O.: Physical properties and methods of purification, 4th edn. Wiley, New York (1986)

    Google Scholar 

  50. Zhao, Y.H., Abraham, M.H., Zissimos, A.M.: Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 68, 7368–7373 (2003). https://doi.org/10.1021/jo034808o

    Article  CAS  PubMed  Google Scholar 

  51. Yoshida, K., Tsuchiya, M., Tachikawa, N., Dokko, K., Watanabe, M.: Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J. Phys. Chem. C 115(37), 18384–18394 (2011). https://doi.org/10.1021/jp206881t

    Article  CAS  Google Scholar 

  52. Saito, M., Yamada, S., Ishikawa, T., Otsuka, H., Ito, K., Kubo, Y.: Factors influencing fast ion transport in glyme-based electrolytes for rechargeable lithium–air batteries. RSC Adv. 7, 49031–49040 (2017). https://doi.org/10.1039/c7ra07501d

    Article  CAS  Google Scholar 

  53. Matsuda, Y., Morita, M., Tachihara, F.: Conductivity of lithium salts in the mixed systems of high permittivity solvents and low viscosity solvents. Bull. Chem. Soc. Jpn. 59, 1967–1973 (1986)

    Article  CAS  Google Scholar 

  54. Borodin, O., Smith, G.D.: Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents. J. Phys. Chem. B 110, 6293–6299 (2006). https://doi.org/10.1021/jp055079e

    Article  CAS  PubMed  Google Scholar 

  55. Gomez-Camer, J.L., Acebedo, B., Ortiz-Vitoriano, N., Monterrubio, I., Galceran, M., Rojo, T.: Unravelling the impact of electrolyte nature on Sn4P3/C negative electrodes for Na-ion batteries. J. Mater. Chem. A 7, 18434–18441 (2019). https://doi.org/10.1039/c9ta04288a

    Article  CAS  Google Scholar 

  56. Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M., Palacin, M.R.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012). https://doi.org/10.1039/c2ee22258b

    Article  CAS  Google Scholar 

  57. Kim, H., Hong, J., Park, Y.-U., Kim, J., Hwang, I., Kang, K.: Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Func. Mater. 25, 534–541 (2015). https://doi.org/10.1002/adfm.201402984

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study involved in the present work. Material preparation, data collection and analysis were performed by CT, CD and RN. The first draft of the manuscript was written by CD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christine Damas.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachouaft, C., Damas, C. & Naejus, R. Effect of Organic Carbonate Solvent Composition on the Volumetric and Viscometric Behavior of Linear Ethers. J Solution Chem 52, 1232–1254 (2023). https://doi.org/10.1007/s10953-023-01312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01312-0

Keywords

Navigation