Skip to main content
Log in

Vapor–Liquid and Chemical Equilibrium for Esterification of Acetic Acid + Isopropanol with [HSO3-bmim][HSO4] at 101.33 kPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Vapor–liquid equilibrium data of binary systems (water + acetic acid, isopropanol + water, and acetic acid + isopropyl acetate), and ternary systems (water + acetic acid + 1-sulfobutyl-3-methylimidazolium hydrogen sulfate (ionic liquid, [HSO3-bmim][HSO4]), isopropanol + water + [HSO3-bmim][HSO4], and acetic acid + isopropyl acetate + [HSO3-bmim][HSO4]) were determined at 101.33 kPa. The nonrandom two-liquid (NRTL) model fitted well with the experimental data. The σ-profiles of water, acetic acid, isopropanol, isopropyl acetate, [HSO3-bmim]+, and [HSO4] were calculated using the COSMO-RS model. Furthermore, the binding abilities of [HSO3-bmim][HSO4] ionic liquid with water, acetic acid, isopropanol, and isopropyl acetate were analyzed by σ-profiles. The chemical and phase equilibrium data of acetic acid + isopropanol, and acetic acid + isopropanol + [HSO3-bmim][HSO4] systems were determined, meanwhile, the chemical equilibrium constant Kr was calculated. These results provided basic thermodynamic data for [HSO3-bmim][HSO4] as the catalyst for the esterification system of acetic acid with isopropanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lai, I.K., Hung, S.B., Hung, W.J., Yu, C.C., Lee, M.J., Huang, H.P.: Design and control of reactive distillation for ethyl and isopropyl acetates production with azeotropic feeds. Chem. Eng. Sci. 62, 878–898 (2007). https://doi.org/10.1016/j.ces.2006.10.019

    Article  CAS  Google Scholar 

  2. Fang, P., Wang, J., Zeng, Z., Xue, W.: Solubility and liquid–liquid equilibria for the isopropyl acetate + isopropanol + acetic acid + water quaternary system at 313.15 K and 101.3 kPa. J. Chem. Eng. Data. 64, 4551–4556 (2019). https://doi.org/10.1021/acs.jced.9b00595

    Article  CAS  Google Scholar 

  3. Zhang, Z., Pan, F., Zhang, Q., Zhang, T., Zhang, L., Wu, K.: Isobaric vapor–liquid equilibria for ethyl acetate + methanol + ionic liquids ternary systems at 101.3 kPa. J. Chem. Eng. Data. 61, 772–779 (2016). https://doi.org/10.1021/acs.jced.5b00546

    Article  CAS  Google Scholar 

  4. Jia, X., Luo, Y., Wang, X.: Solubility behavior of 3, 3, 3-trifluoropropene in 1-hexyl-3-methyl-imidazolium hexafluorophosphate and 1-octyl-3-methyl-imidazolium hexafluorophosphate. J. Mol. Liq. 347, 118347 (2022). https://doi.org/10.1016/j.molliq.2021.118347

    Article  CAS  Google Scholar 

  5. Cao, J., Yu, G., Chen, X., Abdeltawab, A.A., Al-Enizi, A.M.: Determination of vapor–liquid equilibrium of methyl acetate + methanol + 1-alkyl-3-methylimidazolium dialkylphosphates at 101.3 kPa. J. Chem. Eng. Data. 62, 816–824 (2017). https://doi.org/10.1021/acs.jced.6b00852

    Article  CAS  Google Scholar 

  6. Arce, P.F., Igarashi, E.M., Freire, N.V., Vásquez, D.M., Robles, P.A.: Sequestration of light hydrocarbons in ionic liquids at high-pressures: Consistency and thermodynamic modeling. Fluid Phase Equilib. 546, 113119 (2021). https://doi.org/10.1016/j.fluid.2021.113119

    Article  CAS  Google Scholar 

  7. Li, Y., Zou, Y., Xu, H., He, R., Muhammad, Y., Tong, Z.: Preparation of n-amyl acetate via esterification of acetic acid and n-amyl alcohol using [HSO3-pmim][HSO4]/SiO2 as catalyst: Catalyst preparation, characterization and reaction kinetics. Chem. Eng. J. 410, 128282 (2021). https://doi.org/10.1016/j.cej.2020.128282

    Article  CAS  Google Scholar 

  8. He, R., Dong, Y., Zou, Y., Zhao, J., Yaseen, M., Mu, C., Tong, Z.: Simulation and optimization of reactive distillation for the production of ethyl acetate using [BMIM]HSO4 as catalyst. Chem. Eng. Res. Des. 161, 218–231 (2020). https://doi.org/10.1016/j.cherd.2020.01.014

    Article  CAS  Google Scholar 

  9. Yang, J., Zhou, L., Guo, X., Li, L., Zhang, P., Hong, R.: Study on the esterification for ethylene glycol diacetate using supported ionic liquids as catalyst: Catalysts preparation, characterization, and reaction kinetics. Process. Chem. Eng. J. 280, 147–157 (2015). https://doi.org/10.1016/j.cej.2015.05.096

    Article  CAS  Google Scholar 

  10. He, R., Zou, Y., Muhammad, Y., Tong, Z.: Study on the intensification of reaction kinetics and reactive distillation for the esterification of n-butyl acetate using [HSO3-BMIM][HSO4] as a high-efficiency ionic liquid catalyst. Ind. Eng. Chem. Res. 60, 12847–12863 (2021). https://doi.org/10.1021/acs.iecr.1c02062

    Article  CAS  Google Scholar 

  11. Zhang, Z., Lu, R., Li, W., Chen, J., Zhang, Q.: Separation of isopropyl acetate + isopropanol azeotropic mixture using ionic liquids with acetate anion as entrainers. Fluid Phase Equilib. 498, 116–121 (2019). https://doi.org/10.1016/j.fluid.2019.06.016

    Article  CAS  Google Scholar 

  12. Andreatta, A.E., Francisco, M., Rodil, E., Soto, A., Arce, A.: Isobaric vapour–liquid equilibria and physical properties for isopropyl acetate + isopropanol + 1-butyl-3-methyl-imidazolium bis(trifluo-romethy-sulfonyl)imide nixtures. Fluid Phase Equilib. 300, 162–171 (2011). https://doi.org/10.1016/j.fluid.2010.10.003

    Article  CAS  Google Scholar 

  13. Andreatta, A.E., Arce, A., Rodil, E., Soto, A.: Physical properties and phase equilibria of the system isopropyl acetate + isopropanol + 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase Equilib. 287, 84–94 (2010). https://doi.org/10.1016/j.fluid.2010.10.003

    Article  CAS  Google Scholar 

  14. Boli, E., Dimou, E., Voutsas, E.: Separation of the isopropanol-water azeotropic mixture using ionic liquids. Fluid Phase Equilib. 456, 77–83 (2018). https://doi.org/10.1016/j.fluid.2017.10.003

    Article  CAS  Google Scholar 

  15. J, Balakrishnan, P.S.T.: Ammonium-based ionic liquid as an entrainer for the separation of n-propanol + water and isopropanol + water mixtures. J. Chem. Eng. Data. 63, 498–507 (2018). https://doi.org/10.1021/acs.jced.7b00523

    Article  CAS  Google Scholar 

  16. Jain, T., Sharma, H., Singh, N., Kushwaha, J.P.: Evaluation of the 2,2′,2″-nitrilotrisethanol as an entrainer for separation of an isopropanol + water mixture. J. Chem. Eng. Data. 64, 107–114 (2018). https://doi.org/10.1021/acs.jced.8b00610

    Article  CAS  Google Scholar 

  17. Kim, H.D., Hwang, I.C., Park, S.J.: Isothermal vapor liquid equilibrium data at T = 333.15 K and excess molar volumes and refractive indices at T = 298.15 K for the dimethyl carbonate plus methanol and isopropanol plus water with ionic liquids. J. Chem. Eng. Data 55, 2474–2481 (2010). https://doi.org/10.1021/je9008624

    Article  CAS  Google Scholar 

  18. Peng, Y., Fu, J., Lu, X.: Isobaric vapor–liquid equilibrium for water + acetic acid + 1-butyl-3- methylimidazolium dibutylphosphate at 101.32 kPa. Fluid Phase Equilib. 363, 220–227 (2014). https://doi.org/10.1016/j.fluid.2013.11.036

    Article  CAS  Google Scholar 

  19. Peng, Y., Lu, X.: Isobaric vapor–liquid equilibria for water + acetic acid + 1-ethyl-3-methylimidazolium diethylphosphate at 101.32 kPa. J. Chem. Eng. Data. 59, 250–256 (2014). https://doi.org/10.1021/je400282h

    Article  CAS  Google Scholar 

  20. Tsanas, C., Stenby, E.H., Yan, W.: Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers. Chem. Eng. Sci. 174, 112–126 (2017). https://doi.org/10.1016/j.ces.2017.08.033

    Article  CAS  Google Scholar 

  21. Tsanas, C., Stenby, E.H., Yan, W.: Calculation of multiphase chemical equilibrium by the modified RAND method. Ind. Eng. Chem. Res. 56, 11983–11995 (2017). https://doi.org/10.1021/acs.iecr.7b02714

    Article  CAS  Google Scholar 

  22. Tsanas, C., Stenby, E.H., Yan, W.: Calculation of multiphase chemical equilibrium in electrolyte solutions with non-stoichiometric methods. Fluid Phase Equilib. 482, 81–98 (2019). https://doi.org/10.1016/j.fluid.2018.10.008

    Article  CAS  Google Scholar 

  23. Koulocheris, V., Panteli, M., Petropoulou, E., Louli, V., Voutsas, E.: Modeling of simultaneous chemical and phase equilibria in systems involving non-reactive and reactive azeotropes. Ind. Eng. Chem. Res. 59, 8836–8847 (2020). https://doi.org/10.1021/acs.iecr.0c00468

    Article  CAS  Google Scholar 

  24. Bernatova´, S., Aim, K., Wichterle, I.: Vapor–liquid and chemical equilibria in the ethanol + ethanoic acid system at 348.15 K. J. Chem. Eng. Data 52, 20–23 (2007). https://doi.org/10.1021/je060143m

    Article  CAS  Google Scholar 

  25. Lladosa, E., Montón, J.B., Burguet, M.C., Muñoz, R.: Phase equilibrium for the esterification reaction of acetic acid + butan-1-ol at 101.3 kPa. J. Chem. Eng. Data 53, 108–115 (2008). https://doi.org/10.1021/je700411p

    Article  CAS  Google Scholar 

  26. Teodorescu, M., Aim, K., Wichterle, I.: Isothermal Vapor–liquid equilibrium in the quaternary water + 2-propanol + acetic acid + isopropyl acetate system with chemical reaction. J. Chem. Eng. Data 46, 261–266 (2001). https://doi.org/10.1021/je0001476

    Article  CAS  Google Scholar 

  27. Li, Q., Cao, L., Sun, X., Liu, P., Wang, B.: Isobaric vapor–liquid equilibrium for ethyl acetate + acetonitrile + 1-butyl-3-methylimidazolium hexafluorophosphate at 101.3 kPa. J. Chem. Eng. Data 58, 1112–1116 (2013). https://doi.org/10.1021/je301204w

    Article  CAS  Google Scholar 

  28. Hiaki, T., Kawai, A.: Vapor–liquid equilibria determination for a hydrofluoroether with several alcohols. Fluid Phase Equilib. 158–160, 979–989 (1999). https://doi.org/10.1016/S0378-3812(99)00064-3

    Article  Google Scholar 

  29. Li, L., He, Y., Wu, Y., Zou, W.: Experimental measurements and correlations isobaric vapor–liquid Eequilibria for water + acetic acid + sec-butyl acetate at 101.3 kPa. Chin. J. Chem. Eng. 21, 759–765 (2013). https://doi.org/10.1016/S1004-9541(13)60534-0

    Article  CAS  Google Scholar 

  30. Chang, W., Guan, G., Li, X., Yao, H.: Isobaric vapor–liquid equilibria for water + acetic acid +(n-pentyl acetate or isopropyl acetate). J. Chem. Eng. Data 50, 1129–1133 (2005). https://doi.org/10.1021/je049711t

    Article  CAS  Google Scholar 

  31. Janakey, D.V., Sai, P.S.T., Balakrishnan, A.R.: Experimental studies and thermodynamic analysis of isobaric vapor–liquid–liquid equilibria of 2-propanol + water system using n-propyl acetate and isopropyl acetate as entrainers. Fluid Phase Equilib. 454, 22–34 (2017). https://doi.org/10.1016/j.fluid.2017.09.010

    Article  CAS  Google Scholar 

  32. Deng, X., Inastiti, N.I., Zhang, J., Gao, J., Xu, D., Ma, Y.: Isobaric vapour–liquid equilibrium for binary and ternary systems of isopropyl acetate, isopropyl alcohol, acetic acid and water at 101.3 kPa. J. Chem. Thermodyn. 165, 106662 (2022). https://doi.org/10.1016/j.jct.2021.106662

    Article  CAS  Google Scholar 

  33. Renon, H., Prausnitz, J.M.: Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures. Ind. Eng. Chem. Process. Des. 8, 413–419 (1969). https://doi.org/10.1021/i260031a019

    Article  CAS  Google Scholar 

  34. Chen, Q., Zhang, L., Zhang, H., Wang, X., Liu, A., Chen, H.: Measurements and correlation of isobaric vapor–liquid equilibrium data for binary mixtures of furan, oxolane and furan-2-carbaldehyde and application of the binary model parameters for further prediction of the ternary system. J. Chem. Eng. Data 65, 2583–2596 (2020). https://doi.org/10.1021/acs.jced.9b01210

    Article  CAS  Google Scholar 

  35. Wang, Y., Li, Y., Guo, J., Zhao, H., Li, F., Li, Q.: Vapor–liquid equilibrium experiment for butanone and ethyl acetate at 101.3 kPa. J. Chem. Eng. Data 67, 151–158 (2021). https://doi.org/10.1021/acs.jced.1c00690

    Article  CAS  Google Scholar 

  36. Xu, Y., Li, T., Peng, C., Liu, H.: Influence of C2–H of imidazolium-based ionic liquids on the interaction and vapor–liquid equilibrium of ethyl acetate + ethanol system: [Bmim]BF4 vs [Bmmim]BF4. Ind. Eng. Chem. Res. 54, 9038–9045 (2015). https://doi.org/10.1021/acs.iecr.5b01325

    Article  CAS  Google Scholar 

  37. Li, W., Zhang, L., Guo, H., Li, J., Zhang, T.: Effect of ionic liquids on the binary vapor–liquid equilibrium of ehyl acetate + methanol system at 101.3 kPa. J. Chem. Eng. Data 64, 34–41 (2018). https://doi.org/10.1021/acs.jced.8b00424

    Article  CAS  Google Scholar 

  38. Yue, K., Zhou, G.: Isobaric vapor–liquid equilibrium for ethyl acetate + ethanol with ionic liquids [MMIM][DMP] and [OMIM][PF6] as entrainers. J. Mol. Liq. 348, 118404 (2022). https://doi.org/10.1016/j.molliq.2021.118404

    Article  CAS  Google Scholar 

  39. Hayden, J.G., O’Connell, J.P.: A generalized method for predicting second virial coefficients. Ind. Eng. Chem. Process. Des. Dev. 14, 209–216 (1975). https://doi.org/10.1021/i260055a003

    Article  CAS  Google Scholar 

  40. Marek, J., Standart, G.: Vapour–liquid equilibria in mixtures containing an associating substance. I. equilibrium relationships for systems with an associating component. Coll. Czech. Chem. Commun. 19, 1074–1084 (1954). https://doi.org/10.1135/cccc19541074

    Article  CAS  Google Scholar 

  41. Marek, J.: Vapour–liquid equilibria in mixtures containing an associating substance. II. Binary mixtures of acetic acid at atmospheric pressure. Coll. Czech. Chem. Commun. 20, 1490–1502 (1955). https://doi.org/10.1135/cccc19551490

    Article  CAS  Google Scholar 

  42. Xu, Z.P., Chuang, K.T.: Correlation of vapor – liquid equilibrium data for methyl acetate – methanol –water – acetic acid mixtures. Ind. Eng. Chem. Res. 36, 2866–2870 (1997). https://doi.org/10.1021/ie9701175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (22168004), the Natural Science Foundation of Guangxi (2017GXNSFDA198047), and the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2019Z010, 2021Z013).

Author information

Authors and Affiliations

Authors

Contributions

GY data determination and manuscript writing; YZ and KH Reviewed and edited; QL investigation and analysis; ZT.

Corresponding author

Correspondence to Zhangfa Tong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zou, Y., Huang, K. et al. Vapor–Liquid and Chemical Equilibrium for Esterification of Acetic Acid + Isopropanol with [HSO3-bmim][HSO4] at 101.33 kPa. J Solution Chem 52, 1209–1231 (2023). https://doi.org/10.1007/s10953-023-01311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01311-1

Keywords

Navigation