Skip to main content
Log in

Thermodynamic Modeling of Aqueous Guanidinium Chloride/Sodium l-Aspartate (Na-l-Asp) Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present work, osmotic coefficients of aqueous mixtures of guanidinium chloride (GndmCl) and sodium l-aspartate (Na-l-Asp = (S)-aminobutanedioic acid sodium salt), previously determined at T = 298.15 K and 310.15 K, were described by ePC-SAFT (equation of state) and molecular interactions in ternary systems were deduced from activity coefficients. The electrolyte Perturbed-Chain Statistical Associating Fluid Theory ePC-SAFT, based on Wertheim’s TPT1 perturbation theory is proved to be an excellent tool to model ternary amino acid salt + salt + water systems. ePC-SAFT modeling required the following steps. First, all the pure-component parameters were inherited from literature. Second, the binary interaction parameters to water were used as determined from the literature as well. Finally, a binary interaction parameter was required between the salt ion and the amino acid salt. We found that a satisfying modeling was obtained by setting the binary parameters between anion and cation to zero and using a binary interaction parameter kij = −0.1 for Gndm+ and the amino acid salt. Without fitting any additional parameters, osmotic coefficients, activity coefficients of water and of the solutes have been calculated, in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marcus, Y.: Ions in Water and Biophysical Implications. From Chaos to Cosmos. Springer, Dordrecht (2012)

    Book  Google Scholar 

  2. Wu, G.: Amino Acid, Biochemistry and Nutrition. CRC Press (Taylor and Francis Group), Boca Raton (2013)

    Book  Google Scholar 

  3. Kunz, W.: Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 15, 34–39 (2010)

    Article  CAS  Google Scholar 

  4. Tsurko, J., Kunz, W. (eds.): Thermodynamics of Amino Acid and Protein Solutions. Transworld Research Network, Trivandrum (2010)

    Google Scholar 

  5. Lund, M., Heida, J., Jungwirth, P. In: Kunz, W. (ed.) Specific Ion Effects. World Scientific Publishing, N.J., L., Singapore (2010)

  6. Kunz, W., Belloni, L., Bernard, O., Ninham, B.W.: Osmotic coefficients and surface tensions of aqueous electrolyte solutions: role of dispersion forces. J. Phys. Chem. B 108, 2398–2404 (2004)

    Article  CAS  Google Scholar 

  7. Tsurko, E.N., Neueder, R., Kunz, W.: Thermodynamic properties of L-aspartates of alkali and alkali-earth metals in aqueous solutions at 298.15 and 310.15 K and specific cation effects on biomolecule solvation. J. Solution Chem. 47, 727–748 (2018)

    Article  CAS  Google Scholar 

  8. Tsurko, E.N., Neueder, R., Kunz, W.: Anion effect on glutamate solutions at 298.15 and 310.15 k as deduced from vapor pressure measurements. J. Mol. Liq. 205, 119–122 (2015)

    Article  CAS  Google Scholar 

  9. Cameretti, L.F., Sadowski, G.: Modeling of aqueous amino acid and polypeptide solutions with PC-SAFT. Chem. Eng. Process 47, 1018–1025 (2008)

    Article  CAS  Google Scholar 

  10. Cameretti, L.F., Sadowski, G., Mollerup, J.M.: Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory. Ind. Eng. Chem. Res. 44, 3355–3362 (2005)

    Article  CAS  Google Scholar 

  11. Tomé, L.I.N., Jorge, M., Gomes, J.R.B., Coutinho, J.A.P.: Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution. J. Phys. Chem. B 116, 1831–1842 (2012)

    Article  PubMed  Google Scholar 

  12. Tomé, L.I.N., Pinho, S.P., Jorge, M., Gomes, J.R.B., Coutinho, J.A.P.: Salting-in with a salting-out agent: explaining the cation specific effects on the aqueous solubility of amino acids. J. Phys. Chem. B 117, 6116–6128 (2013)

    Article  PubMed  Google Scholar 

  13. Mehringer, J., Do, T.-M., Touraud, D., Hohenschutz, M., Khoshsima, A., Horinek, D., Kunz, W.: Hofmeister vs. Neuberg—is ATP really a biological hydrotrope? Cell Rep. Phys. Sci. 2, 100343 (2021)

    Article  CAS  Google Scholar 

  14. Nerukh, D., Ryabov, V., Glen, R.C.: Complex temporal patterns in molecular dynamics: a direct measure of the phase-space exploration by the trajectory at macroscopic time scales. Phys. Rev. E 77, 036225 (2008)

    Article  Google Scholar 

  15. Nerukh, D., Ryabov, V.: Statistical complexity of low- and high-dimensional systems. J. Atmos. Mol. Opt. Phys. 6, 589651 (2012). https://doi.org/10.1155/2012/589651

    Article  Google Scholar 

  16. Tarasova, E., Nerukh, D.: All-atom molecular dynamics simulations of whole viruses. Phys. Chem. Lett. 9, 5805–5809 (2018)

    Article  CAS  Google Scholar 

  17. Wu, Y., Okesola, B.O., Xu, J., Korotkin, I., Berardo, A., Corridori, I., et al.: Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nat. Commun. 11, 1–12 (2020)

    CAS  Google Scholar 

  18. Schellman, J.A., Gassner, N.C.: The enthalpy of transfer of unfolded proteins into solutions of urea and guanidinium chloride. Biophys. Chem. 59, 259–275 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Marcus, Y.: The guanidinium ion. J. Chem. Thermodyn. 48, 70–74 (2012)

    Article  CAS  Google Scholar 

  20. Makhatadze, G.I., Fernandez, J., Freire, E., Lilley, T.H., Privalov, P.L.: Thermodynamics of aqueous guanidinium hydrochloride solutions in the temperature range from 283.15 to 313.15 K. J. Chem. Eng. Data 38, 83–87 (1993)

    Article  CAS  Google Scholar 

  21. Heyda, J., Okur, H.I., Hladikova, J., et al.: Guanidinium can both cause and prevent the hydrophobic collapse of biomacromolecules. J. Am. Chem. Soc. 139, 863–870 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maity, H., Muttathukattil, A.N., Reddy, G.: Salt effects on protein folding thermodynamics. Phys. Chem. Lett. 9, 5063–5070 (2018)

    Article  CAS  Google Scholar 

  23. Polak, J., Morávek, P., Brkljača, Z., Vazdar, M., Cibulka, I., Heyda, J.: Computation and volumetric insight into (p, T) effect on aqueous guanidinium chloride. J. Chem. Thermodyn. 158, 106450 (2021)

    Article  CAS  Google Scholar 

  24. Held, C., Tsurko, E.N., Neueder, R., Sadowski, G., Kunz, W.: Cation effect on the water activity of ternary (S)Aminobutanedioic acid magnesium salt solutions at 298.15 and 310.15 K. J. Chem. Eng. Data 61, 3190–3199 (2016)

    Article  CAS  Google Scholar 

  25. Gross, J., Sadowski, G.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    Article  CAS  Google Scholar 

  26. Barker, J.A., Henderson, D.: Perturbation theory and equation of state for fluids: the square-well potential. J. Chem. Phys. 47, 2856 (1967)

    Article  CAS  Google Scholar 

  27. Held, C., Reschke, T., Mohammad, S., Luza, A., Sadowski, G.: ePC-SAFT revised. Chem. Eng. Res. Des. 92, 2884–2897 (2014)

    Article  CAS  Google Scholar 

  28. Sun, Y., Laaksonen, A., Lub, X., Ji, X.: How to detect possible pitfalls in ePC-SAFT modelling. 2. Extension to binary mixtures of 96 ionic liquids with CO2, H2S, CO, O2, CH4, N2, and H2. Ind. Eng. Chem. Res. 59, 21579–21591 (2020)

    Article  CAS  Google Scholar 

  29. Chiko, A., Polishuk, I., Cea-Klapp, E., Garrido, J.M.: Comparison of CP-PC-SAFT and SAFT-VR-Mie in predicting phase equilibria of binary systems comprising gases and 1-alkyl-3-methylimidazolium ionic liquids. Molecules 26, 6621 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Q., Ji, Y., Ge, K.: Influence of excipients on thermodynamic phase behavior of pharmaceutical/solvent systems: molecular thermodynamic model prediction. Chem. Eng. Sci. 244, 116798 (2021)

    Article  CAS  Google Scholar 

  31. Polishuk, I.: Wide-ranging prediction of phase behavior in complex systems by CP-PC-SAFT with Universal kij values. I. Mixtures of non-associating compounds with [C2mim][EtSO4], [C4mim][MeSO4], and [C2mim][MeSO3] ionic liquids. J. Mol. Liq. 310, 113266 (2020)

    Article  CAS  Google Scholar 

  32. Stodt, M.F.B., Stuckenholz, M., Kiefer, J., Schröer, W., Rathke, B.: Vapor liquid equilibria of 1-Ethyl-3-methylimidazolium triflate (C2mimTfO) and n-alkyl alcohol mixtures. Phys. Chem. B 123, 6076–6089 (2019)

    Article  CAS  Google Scholar 

  33. Bülow, M., Ascani, M., Held, C.: ePC-SAFT advanced—Part I: physical meaning of including a concentration-dependent dielectric constant in the Born term and in the Debye–Hückel theory. Fluid Phase Equilb. 535, 112967 (2021)

    Article  Google Scholar 

  34. Held, C., Cameretti, L.F., Sadowski, G.: Modeling aqueous electrolyte solutions. Part 1. Fully dissociated electrolytes. Fluid Phase Equilib. 270, 87–96 (2008)

    Article  CAS  Google Scholar 

  35. Wertheim, M.S.: Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19–34 (1984)

    Article  Google Scholar 

  36. Wertheim, M.S.: Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35, 35–47 (1984)

  37. Held, C., Neuhaus, T., Sadowski, G.: Compatible solutes: thermodynamic properties and biological impact of ectoines and prolines. Biophys. Chem. 152, 28–39 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. Tsurko, E.N., Neueder, R., Held, C., Kunz, W.: Guanidinium cation effect on the water activity of ternary (S)Aminopentanedioic acid sodium salt solutions at 298.15 and 310.15 K. J. Chem. Eng. Data. 64, 1256–1264 (2019)

    Article  CAS  Google Scholar 

  39. Cameretti, L.F.: Modeling of Thermodynamic Properties in Biological Solutions. Dissertation subm. Faculty Biochem. and Chem. Eng. for the Degree of Dr.-Ing., Dortmund University of Technology Sept. 3, p. 137 (2008)

  40. Mason, P.E., Neilson, G.W., Enderby, J.E., Saboungi, M.-L., Dempsey, C.E., Mac Kerell, A.D., Brady, J.W.: The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc. 126, 11462–11470 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. Marcus, Y.: The viscosity B-coefficient of the thiocyanate anion. J. Chem. Eng. Data 57, 617–619 (2012)

    Article  CAS  Google Scholar 

  42. Kunz, W. (ed.): Ion Specific Effects. World Scientific, London (2010)

    Google Scholar 

  43. Lund, M., Vrbka, L., Jungwirth, P.: Specific ion binding to nonpolar surface patches of proteins. J. Am. Chem. Soc. 130, 11582–11583 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. Vazdar, M., Uhlig, F., Jungwirth, P.: Like-charge ion pairing in water: an ab initio molecular dynamics study of aqueous guanidinium cations. J. Phys. Chem. Lett. 3, 2021–2024 (2012)

    Article  CAS  Google Scholar 

  45. Mason, P.E., Neilson, G.W., Kline, S.R., Dempsey, C.E., Brady, J.W.: Nanometer-scale ion aggregates in aqueous electrolyte solutions: guanidinium carbonate. J. Phys. Chem. B. 110, 13477–13483 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors (E.N.T.) would like to acknowledge gratefully funding provided by the scientific-research theme of fundamental studies of Ministry of Education and Science of Ukraine and the Volkswagen Stiftung for a research scholarship. The authors would like to acknowledge gratefully Prof. Gabriele Sadowski for the concept elaboration, Prof. Myroslav F. Holovko for the fruitful discussions. The authors are also grateful to Prof. Vasiliy I. Larin for valuable help and attention to this work.

Author information

Authors and Affiliations

Authors

Contributions

ENT calculations, methodology, the main manuscript text, review, editing. CH wrote the data treatment programs, calculations, methodology, validation, writing, review, editing. WK conceptualization, supervision, writing, review, editing.

Corresponding author

Correspondence to Elena N. Tsurko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 161 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsurko, E.N., Held, C. & Kunz, W. Thermodynamic Modeling of Aqueous Guanidinium Chloride/Sodium l-Aspartate (Na-l-Asp) Mixtures. J Solution Chem 52, 1157–1175 (2023). https://doi.org/10.1007/s10953-023-01306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01306-y

Keywords

Navigation