Skip to main content
Log in

Illustrations of the Synergy Between Thermodynamics and Chemical Reaction into the Triptych “Bioproducts-Bioenergy-Water”

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The growing need for food and energy around the world, as well as the impending water stress due to global warming exacerbated by increasing anthropogenic greenhouse gas emissions, makes sound solutions for sustainable development essential. An alternative is the concept of polygeneration which, based on process intensification, makes it possible to simultaneously obtain several products, chemical or energy, from a single source, preferably renewable. This work aims to highlight the synergy between thermodynamics and chemical reaction in a polygeneration model “bioproducts-bioenergy-water (BBW)” whose two building blocks are illustrated, i.e., (i) solar desalination with power and hydrogen production as well as brine valorization and (ii) production of bioenergy (biodiesel-2G) and bioproducts (biolubricants) based on green circular economy. It is shown that scientific and technological building blocks where thermodynamics and chemical reaction successfully operate in synergy for enhancing process intensification are available to implement the triptych “BBW” that would secure the supply of vital human needs and thus preserve global stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

2E1H:

2-Ethyl-1-hexanol

2G:

Second generation

3G:

Third generation

3E :

Eco-design, eco-material, eco-energy

BioEt:

Bioethanol

CPA:

Cubic-Plus-Association

CSP:

Concentrating solar power

EB:

Ethyl butanoate

EoS:

Equation of state

GCA:

Group contribution with association

GDP:

Gross domestic product

HTF:

Heat transfer fluid

IP:

Isopentane, also designated R601a in the refrigerant list by IUPAC

IMSO:

Indian mustard seed oil

IMSOEEs:

Indian mustard seed oil ethyl esters

IMSO2E1HEs:

Indian mustard seed oil 2-ethyl-1-hexanol esters

LTMED:

Low-temperature multi-effect distillation

ORC:

Organic Rankine cycle

PTC:

Parabolic trough collector

RO:

Reverse osmosis

RC:

Rankine cycle

Sc:

Supercritical

TG:

Triglycerides

UMR-PR:

Universal Mixing Rule-Peng-Robinson

UNIFAC:

UNIversal Functional Activity Coefficient

VLE:

Vapor–liquid equilibria

\(AAD_{i} (x)\) :

Average absolute deviation between experimental and calculated property x of component i

\(AAD_{k} (x)\) :

Average absolute deviation between experimental and calculated property x of dataset k

\(\dot{E}x_{d}\) :

Exergy destruction rate occurring inside the considered system

\(\overline{E}x_{k}\) :

Mass exergy of the fluid flowing in stream k

\(\overline{H}_{k}\) :

Mass enthalpy of the fluid flowing in stream k

\(\dot{m}_{k}\) :

Mass flowrate of the fluid flowing in stream k

P :

Pressure

\(\dot{Q}_{k}\) :

Thermal power provided to (or generated by) unit k

R :

Ideal gas constant

R c R :

Recovery ratio

\(\overline{S}_{k}\) :

Mass entropy of the fluid flowing in stream k

SMR :

Stream mass ratio

T :

Temperature

\(T_{ref}\) :

Reference temperature (293.15 K)

\(\dot{W}_{k}\) :

Mechanical power provided to (or generated by) unit k

x :

Liquid mole fraction

y :

Vapor mole fraction

\(\Delta x_{i}\) :

Deviation between the experimental and calculated property x of component i

η :

Turbine (or pump) isentropic efficiency

η ORC :

Thermal efficiency of the ORC

References

  1. Mokhtari, H., Sepahvand, M., Fasihfar, A.: Thermoeconomic and exergy analysis in using hybrid systems (GT+MED+RO) for desalination of brackish water in Persian Gulf. Desalination 399, 1–15 (2016). https://doi.org/10.1016/j.desal.2016.07.044

    Article  CAS  Google Scholar 

  2. Chadegani, E.A., Sharifishourabi, M., Hajiarab, F.: Comprehensive assessment of a multi-generation system integrated with a desalination system: modeling and analyzing. Energy Convers. Manage. 174, 2C0-32 (2018). https://doi.org/10.1016/j.enconman.2018.08.011

    Article  CAS  Google Scholar 

  3. Kasaeian, A., Bellos, E., Shamaeizadeh, A., Tzivanidis, C.: Solar-driven polygeneration systems: recent progress and outlook. Appl. Energy 264, 114764 (2020). https://doi.org/10.1016/j.apenergy.2020.114764

    Article  CAS  Google Scholar 

  4. Palenzuela, P., Alarcón-Padilla, D.C., Zaragoza, G.: Large-scale solar desalination by combination with CSP: techno-economic analysis of different options for the Mediterranean Sea and the Arabian Gulf. Desalination 366, 130–138 (2015). https://doi.org/10.1016/j.desal.2014.12.037

    Article  CAS  Google Scholar 

  5. Palenzuela, P., Ortega-Delgado, B., Alarcón-Padilla, D.C.: Comparative assessment of the annual electricity and water production by concentrating solar power and desalination plants: a case study. Appl. Therm. Eng. 177, 115485 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115485

    Article  CAS  Google Scholar 

  6. Zheng, Y., Caceres Gonzalez, R., Hatzell, M.C., Hatzell, K.B.: Concentrating solar thermal desalination: performance limitation analysis and possible pathways for improvement. Appl. Therm. Eng. 184, 116292 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116292

    Article  Google Scholar 

  7. Jaubert, H., Borel, P., Guichardon, P., Portha, J.F., Jaubert, J.N., Coniglio, L.: Assessment of organic Rankine cycle configurations for solar polygeneration orientated to electricity production and desalination. Appl. Therm. Eng. 195, 116983 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116983

    Article  CAS  Google Scholar 

  8. Raman, J.K., Alves, C.M., Gnansounou, E.: A review on moringa tree and vetiver grass—Potential biorefinery feedstocks. Bioresour. Technol. 249, 1044–1051 (2018). https://doi.org/10.1016/j.biortech.2017.10.094

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, B., Verma, P.: Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288, 119622 (2021). https://doi.org/10.1016/j.fuel.2020.119622

    Article  CAS  Google Scholar 

  10. Chen, J., Bian, X., Rapp, G., Lang, J., Montoya, A., Trethowan, R., Bouyssiere, B., Portha, J.F., Jaubert, J.N., Pratt, P., Coniglio, L.: From ethyl biodiesel to biolubricants: options for an Indian mustard integrated biorefinery toward a green and circular economy. Ind. Crops Prod. 137, 597–614 (2019). https://doi.org/10.1016/j.indcrop.2019.04.041

    Article  CAS  Google Scholar 

  11. Albuquerque, A.A., Ng, F.T.T., Danielski, L., Stragevitch, L.: Phase equilibrium modeling in biodiesel production by reactive distillation. Fuel 271, 117688 (2020). https://doi.org/10.1016/j.fuel.2020.117688

    Article  CAS  Google Scholar 

  12. Rapp, G., Garcia-Montoto, V., Bouyssiere, B., Thiebaud Roux, S., Montoya, A., Trethowan, R., Pratt, P., Mozet, K., Coniglio, L.: Dry-purification by natural adsorbents of indian mustard seed oil ethyl biodiesel and biolubricants: toward a low-cost and environmentally-friendly production route. European Biomass Conference and Exhibition Proceedings, pp 621–624 (2020)

  13. Rapp, G., Garcia-Montoto, V., Bouyssiere, B., Thiebaud-Roux, S., Montoya, A., Trethowan, R., Pratt, P., Mozet, K., Portha, J.F., Coniglio, L.: Indian mustard bioproducts dry-purification with natural adsorbents—A biorefinery for a green circular economy. J. Cleaner Prod. 286, 125411 (2021). https://doi.org/10.1016/j.jclepro.2020.125411

    Article  CAS  Google Scholar 

  14. Bruno, J.C., Lopez-Villada, J., Letelier, E., Romera, S., Coronas, A.: Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination. Appl. Therm. Eng. 28, 2212–2226 (2008). https://doi.org/10.1016/j.applthermaleng.2007.12.022

    Article  CAS  Google Scholar 

  15. Bowskill, D.H., Tropp, U.E., Gopinath, S., Jackson, G., Galindo, A., Adjiman, C.S.: Beyond a heuristic analysis: integration of process and working-fluid design for organic Rankine cycles. Mol. Syst. Des. Eng. 5, 493 (2020). https://doi.org/10.1039/C9ME00089E

    Article  CAS  Google Scholar 

  16. Coniglio, L., Coutinho, J.A.P., Clavier, J.Y., Jolibert, F., Jose, J., Mokbel, I., Pillot, D., Pons, M.N., Sergent, M., Tschamber, V.: Biodiesel via supercritical ethanolysis within a global analysis “Feedstocks-conversion-engine” for a sustainable fuel alternative. Prog. Energy Combust. Sci. 43, 1–35 (2014). https://doi.org/10.1016/j.pecs.2014.03.001

    Article  Google Scholar 

  17. Muhammad, F., Oliveira, M.B., Pignat, P., Jaubert, J.N., Pinho, S.P., Coniglio, L.: Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. Fuel 203, 633–641 (2017). https://doi.org/10.1016/j.fuel.2017.05.007

    Article  CAS  Google Scholar 

  18. Roze, F., Pignat, P., Ferreira, O., Pinho, S.P., Jaubert, J.N., Coniglio, L.: Phase equilibria of mixtures involving fatty acid ethyl esters and fat alcohols between 4 and 27 kPa for bioproduct production. Fuel 306, 121304 (2021). https://doi.org/10.1016/j.fuel.2021.121304

    Article  CAS  Google Scholar 

  19. Weidlich, U., Gmehling, J.: A modified UNIFAC model. 1. Prediction of VLE, hE, and γ∞. Ind. Eng. Chem. Res. 26, 1372–1381 (1987)

    Article  CAS  Google Scholar 

  20. Gmehling, J., Li, J., Schiller, M.: A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 32, 178–193 (1993)

    Article  CAS  Google Scholar 

  21. Gmehling, J., Wittig, R., Lohmann, J., Joh, R.: A modified UNIFAC (Dortmund) model. 4. Revision and extension. Ind. Eng. Chem. Res. 41, 1678–1688 (2002)

    Article  CAS  Google Scholar 

  22. Nitièma-Yefanova, S., Coniglio, L., Schneider, R., Nébié, R.H.C., Bonzi-Coulibaly, Y.L.: Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds—Laboratory scale development. Renew. Energy 96, 881–890 (2016). https://doi.org/10.1016/j.renene.2016.04.100

    Article  CAS  Google Scholar 

  23. Nitièma-Yefanova, S., Tschamber, V., Richard, R., Thiebaud-Roux, S., Bouyssiere, B., Bonzi-Coulibaly, Y.L., Nébié, R.H.C., Coniglio, L.: Ethyl biodiesels derived from non-edible oils within the biorefinery concept—Pilot scale production & engine emissions. Renew. Energy 109, 634–645 (2017). https://doi.org/10.1016/j.renene.2017.03.058

    Article  CAS  Google Scholar 

  24. Alsaleh, M., Abdul-Rahim, A.S., Mohd-Shahwahid, H.O.: Determinants of technical efficiency in the bioenergy industry in the EU28 region. Renew. Sust. Energ. Rev. 78, 1331–1349 (2017). https://doi.org/10.1016/j.rser.2017.04.049

    Article  Google Scholar 

  25. Alsaleh, M., Abdul-Rahim, A.S.: Determinants of cost efficiency of bioenergy industry: evidence from EU28 countries. Renew. Energy 127, 746–762 (2018). https://doi.org/10.1016/j.renene.2018.04.085

    Article  Google Scholar 

  26. Abdulwakil, M.M., Abdul-Rahim, A.S., Alsaleh, M.: Bioenergy efficiency change and its determinants in EU-28 region: evidence using least square dummy variable corrected estimation. Biomass Bioenergy 137, 105569 (2020). https://doi.org/10.1016/j.biombioe.2020.105569

    Article  Google Scholar 

  27. Alsaleh, M., Abdul-Rahim, A.S.: The pathway toward bioenergy growth: does information and communication technology development make a difference in EU economies? Biomass Convers. Biorefin. (2021). https://doi.org/10.1007/s13399-021-01933-9

    Article  Google Scholar 

  28. ProII SimSci, 2018 Schneider Electric Software, version 10.1.2.

  29. Talebbeydokhti, P., Cinocca, A., Cipollone, R., Morico, B.: Analysis and optimization of LT-MED system powered by an innovative CSP plant. Desalination 413, 223–233 (2017). https://doi.org/10.1016/j.desal.2017.03.019

    Article  CAS  Google Scholar 

  30. Mata-Torres, C., Escobar, R.A., Cardemil, J.M., Simsek, Y., Matute, J.A.: Solar polygeneration for electricity production and desalination: case studies in Venezuela and northern Chile. Renew. Energy 101, 387–398 (2017). https://doi.org/10.1016/j.renene.2016.08.068

    Article  Google Scholar 

  31. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976). https://doi.org/10.1021/i160057a011

    Article  CAS  Google Scholar 

  32. Le Guennec, Y., Romain Privat, R., Jaubert, J.N.: Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub and super-critical domains. Fluid Phase Equilib. 429, 301–312 (2016). https://doi.org/10.1016/j.fluid.2016.09.003

    Article  CAS  Google Scholar 

  33. Matsuda, H., Yamada, H., Takahashi, R., Koda, A., Kurihara, K., Tochigi, K., Ochi, K.: Ebulliometric determination and prediction of vapor–liquid equilibria for binary mixtures of ethanol and ethyl hexanoate. J. Chem. Eng. Data 56, 5045–5051 (2011). https://doi.org/10.1021/je200868y

    Article  CAS  Google Scholar 

  34. Kontogeorgis, G.M., Voutsas, E., Yakoumis, I., Tassios, D.P.: An equation of state for associating fluids. Ind. Eng. Chem. Res. 35, 4310–4318 (1996). https://doi.org/10.1021/ie9600203

    Article  CAS  Google Scholar 

  35. Oliveira, M.B., Follegatti-Romero, L.A., Lanza, M., Batista, F.R.M., Batista, E.A.C., Meirelles, A.J.A.: Low pressure vapor–liquid equilibria modeling of biodiesel related systems with Cubic-Plus-Association (CPA) equation of state. Fuel 133, 224–231 (2014). https://doi.org/10.1016/j.fuel.2014.05.016

    Article  CAS  Google Scholar 

  36. Larsen, B.L., Rasmussen, P., Fredenslund, A.: A modified UNIFAC group contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26, 2274–2286 (1987)

    Article  CAS  Google Scholar 

  37. Lucia, U., Grisolia, G.: Exergy inefficiency: an indicator for sustainable development analysis. Energy Rep. 5, 62–69 (2019). https://doi.org/10.1016/j.egyr.2018.12.001

    Article  Google Scholar 

  38. Lucia, U., Grisolia, G.: Cyanobacteria and microalgae: thermoeconomic considerations in biofuel production. Energies 11, 156 (2018). https://doi.org/10.3390/en11010156

    Article  CAS  Google Scholar 

  39. Lucia, U., Grisolia, G.: Biofuels from micro-organisms: thermodynamic considerations on the role of electrochemical potential on micro-organisms growth. Appl. Sci. 11, 2591 (2021). https://doi.org/10.3390/app11062591

    Article  CAS  Google Scholar 

  40. Grisolia, G., Fino, D., Lucia, U.: Biomethanisation of rice straw: a sustainable perspective for the valorisation of a field residue in the energy sector. Sustainability 14, 5679 (2022). https://doi.org/10.3390/su14095679

    Article  CAS  Google Scholar 

  41. Fan, L., Zhang, H., Li, J., Wang, Y., Leng, L., Li, J., Yao, Y., Lu, Q., Yuan, W., Zhou, W.: Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: a review. Algal Res. 47, 101819 (2020). https://doi.org/10.1016/j.algal.2020.101819

    Article  Google Scholar 

  42. Zhang, J., Huo, X., Li, Y., Strathmann, T.J.: Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C. ACS Sustainable Chem. Eng. 7, 14400–14410 (2019). https://doi.org/10.1021/acssuschemeng.9b00215

    Article  CAS  Google Scholar 

  43. Gautam, R., Vinu, R.: Reaction engineering and kinetics of algae conversion to biofuels and chemicals via pyrolysis and hydrothermal liquefaction. React. Chem. Eng. 5, 1320–1373 (2020). https://doi.org/10.1039/d0re00084a

    Article  CAS  Google Scholar 

  44. Voutsas, E., Louli, V., Boukouvalas, C., Magoulas, K., Tassios, D.: Thermodynamic property calculations with the universal mixing rule for EoS/GE models: results with the Peng-Robinson EoS and a UNIFAC model. Fluid Phase Equilib. 241, 216–228 (2006). https://doi.org/10.1016/j.fluid.2005.12.028

    Article  CAS  Google Scholar 

  45. Zabaloy, M.S., Mabe, G.D.B., Bottini, S.B., Brignole, E.A.: Vapor-liquid equilibria in ternary mixtures of water–alcoohol–non polar gases. Fluid Phase Equilib. 83, 15–166 (1993). https://doi.org/10.1016/0378-3812(93)87018-V

    Article  Google Scholar 

  46. González Prieto, M., Sánchez, F.A., Pereda, S.: Thermodynamic model for biomass processing in pressure intensified technologies. J. Supercritical Fluids 96, 53–67 (2015). https://doi.org/10.1016/j.supflu.2014.08.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to express his deepest thanks to the following researchers for their fruitful collaborations that led to papers on which this work is partly built: Olga Ferreira, Simão P. Pinho (Mountain Research Center - CIMO, Polytechnic Institute of Bragança, 5301-855 Bragança, Portugal), Graeme Rapp, Richard Trethowan (The University of Sydney, Plant Breeding Institute, I.A. Watson International Grains Research Centre, PO Box 219, Narrabri, NSW 2390, Australia), Hadrien Jaubert, Pierrette Guichardon (Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, Pôle de l’Etoile, Technopôle de Château-Gombert, 38 rue Frédéric Joliot-Curie, 13451 Marseille, France), Patrice Pignat (PIGNAT SAS, 6, rue Calmette, 67740 Genas, France), Frédéric Roze, Jean-Noël Jaubert and Jean-François Portha (Université de Lorraine - ENSIC, Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), 1 rue Grandville, 54000 Nancy, France)

Author information

Authors and Affiliations

Authors

Contributions

Writing - review & editing

Corresponding author

Correspondence to Lucie Coniglio.

Ethics declarations

Competing Interests

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Also, no funds, grants, or other support was received.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coniglio, L. Illustrations of the Synergy Between Thermodynamics and Chemical Reaction into the Triptych “Bioproducts-Bioenergy-Water”. J Solution Chem 53, 571–593 (2024). https://doi.org/10.1007/s10953-023-01305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01305-z

Keywords

Navigation