Skip to main content
Log in

The Dependence of Absorption Spectrum of Congo Red on the Properties of Media: Solvatochromism, Switch Solvatochromism, Selective Solvation and Polarity Scales

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this study, the effect of polarity and hydrogen bonding ability of solvents on the absorption spectrum of Congo red was investigated. UV–Visible absorption spectra were recorded in eight neat solvents and four aqueous binary solutions of methanol, ethanol (as HBD solvents), and dimethylsulfoxide and dioxane (as HBA solvents). Congo red has two absorption maxima in the range (250–700 nm) that have been assigned to the azo and hydrazo systems. Molar transition energy (ET) values of Congo red in different solvents were correlated with the solvent parameters using linear solvation energy relationships. Multiparameter analysis shows the dependence of the electronic spectra of Congo red on the non-specific and specific interactions. Preferential solvation was observed in all binary mixtures when ET plotted as a function of mole fraction of organic solvents. The results showed that the Congo red was solvated by water–organic solvent complex species in all binary mixtures except in case of aqueous-ethanol mixtures, whose preferred solvation by ethanol in all mole fractions with f12/2 and f12/1 values less than unity. The dual-parameters model is a powerful tool for explaining binary mixture data with Kamlet–Taft parameters. The findings indicated that the HBD and HBA were responsible for the solvatochromism of the binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dakiky, M., Nemcova, I.: Aggregation of o, o’-dihydroxy azo dyes III. effect of cationic, anionic and non-ionic surfactant on the electronic spectra of 2-hydroxy-5-nitrophenylazo-4-[3-methyl-1-(4-sulfophenyl)-5-pyrazolone]. Dyes Pigm. 44, 181–193 (2000)

    Article  CAS  Google Scholar 

  2. Al-Jebaly, A.M., Hemdan, S.S., Ali, F.K.: Solvatochromism effect studies on electronic absorption spectra of some hydroxy tolyl azo benzaldehyde dyes. J. Nat. Sci. Life Appl. Sci. 1, 33–50 (2017)

    Google Scholar 

  3. Neumann, B.: Resolution of absorption spectra of three azo dyes in monomeric state. Dyes Pigm. 52, 47–53 (2002)

    Article  CAS  Google Scholar 

  4. Chen, C.C., Wang, I.: Synthesis of some pyridone azo dyes from 1-substitued 2-hydroxy-6-pyridone derivatives and their colour assessment. Dyes Pigm. 15, 69–82 (1991)

    Article  CAS  Google Scholar 

  5. He, J., Bian, S., Li, L., Kumar, J., Tripathy, S., Samuelson, L.: Photochemical behavior and formation of surface relief grating on self-assembled polyion/dye composite film. J. Phys. Chem. B 104, 10513–10521 (2000)

    Article  CAS  Google Scholar 

  6. Masoud, M.S., Elsamra, R.I.M., Hemdan, S.S.: Solvents, substituent’s and pH’s effects towards the spectral shifts of some highly colored indicators. J. Serb. Chem. Soc. 82, 856–866 (2017)

    Article  Google Scholar 

  7. Al-Jebaly, A.M., Hemdan, S.S., Ali, F.K.: Solvatochromic effect studies on the absorption spectra of 4-[(E)-(3-formayl-4-hydroxyphenyl) diazneyl] benzene sulphonic acid and 2-hydroxy-5-[(E)-(2-nitrophenyl) diazneyl] benzaldehyde azo compounds. J. Sci. Hum. Stud. 39, 1–15 (2017)

    Google Scholar 

  8. Karpicz, R., Gulbinas, V., Undzenas, A.: Picosecond spectroscopic studies of tautomers of a bisazo compounds in solutions. J. Chin. Chem. Soc. 47, 589–595 (2000)

    Article  CAS  Google Scholar 

  9. Kosenkov, D., Slipchenko, L.V.: Solvent effects on the electronic transitions of p-nitroaniline: a QM/EFP study. J. Phys. Chem. A 115, 392–401 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Sidir, Y.G., Sidir, I., Tasal, E., Ermis, E.: Studies on the electronic absorption spectra of some monoazo derivatives. Spectrochim. Acta A 78, 640–647 (2011)

    Article  Google Scholar 

  11. Matias, I.S., Maria, C.A., Sonia, E.B., Eduardo, A.C.: Spectroscopic study of solvent effects on the electronic absorption spectra of flavone and 7-hydroxyflavone in neat and binary solvent mixtures. Int. J. Mol. Sci. 12, 8895–8912 (2011)

    Article  Google Scholar 

  12. Han, W., Liu, T., Himo, F., Toutchkine, A., Bashford, D., Hahn, K.M., Noodleman, L.A.: A theoretical study of the UV/visible absorption and emission solvatochromic properties of solvent-sensitive dyes. Chem. Phys. Chem. 4, 1084–1094 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Reichardt, C.: Solvents and Solvent Effects in Organic Chemistry, 3rd edn. VCH, Vancouver (2004)

    Google Scholar 

  14. Dakiky, M., Kanan, K., Khamis, M.: Synthesis and evaluation of organic pigments and intermediates. 1. Nonmutagenic benzidine analogs. Dyes Pigm. 41, 199–207 (1999)

    Article  CAS  Google Scholar 

  15. Antonov, L., Kawauchi, S., Satoh, M., Komiyama, J.: Ab initio modeling of the solvent influence on the azo-hydrazone tautomerism. Dyes Pigm. 40, 163–170 (1999)

    Article  CAS  Google Scholar 

  16. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

  17. Machado, C., Nascimento, M.G., Rezende, M.C.: Solvato- and halo-chromic behavior of some 4-[(N-methylpyridiniumyl) methylidineamino] phenolate dyes. J. Chem. Soc. Perkin Trans. 2, 2539–2544 (1994)

    Article  Google Scholar 

  18. Alizadeha, K., Seyyedi, S., Shamsipur, M., Rouhan, S., Haghbeen, K.: Solvatochromism and temperature effects on the electronic absorption spectra of some azo dyes. Spectrochim. Acta A 74, 691–694 (2009)

    Article  Google Scholar 

  19. Kim, J.J., Funabiki, K., Muramatsu, H., Shibata, K., Kim, S.H., Shiozaki, H., Hartmannd, H., Matsui, M.: Negative solvatochromism of azo dyes derived from (dialkylamino) thiazole dimers. Chem. Commun. 9, 753–754 (2000)

    Article  Google Scholar 

  20. Nandi, L.G., Facin, F., Marini, V.G., Zimmermann, L.M., Giustida, L.A., Silva, R., Caramori, G.F., Machado, V.G.: Nitro-substitutrd 4-[(phenylmethylene) imino] pheno: solvatochromism and their use as solvatochromic switches and as probes for the investigation of preferential solvation in solvent mixtures. J. Org. Chem. 77, 10668–10679 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. Stock, R.I., Nandi, L.G., Nicoleti, C.R., Schramm, A.D.S., Meller, S.L., Heying, R.S., Coimbra, D.F., Andriani, K.F., Caramori, G.F., Bortoluzzi, A.J., Machado, V.G.: Synthesis and solvatochromism of substituted 4-(Nitrostyryl) phenolate dyes. J. Org. Chem. 80, 7971–7983 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Bakac, A.: Physical Inorganic Chemistry: Principles, Methods, and Models, p. 237. Wiley (2010)

    Book  Google Scholar 

  23. Chatterjee, P., Bagchi, S.: Preferential solvation in mixed binary solvents by ultraviolet-visible spectroscopy: N-ethyl-4-cyanopyridinium iodide in alcohol-acetone mixtures. J. Chem. Soc. Faraday Trans. 87, 587–589 (1991)

    Article  CAS  Google Scholar 

  24. Catalan, J., Dıaz, C., Garcıa-Blanco, F.: Characterization of binary solvent mixtures. J. Org. Chem. 65, 9226–9229 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Grieser, F., Drummond, C.J.: The physicochemical properties of self-assembled surfactant aggregate as determined by some molecular spectroscopic probe techniques. J. Phys. Chem. 92, 5580–5593 (1988)

    Article  CAS  Google Scholar 

  26. Engberts, J.B.F.N.: Organic reactions in highly aqueous binaries. Pure Appl. Chem. 54, 1797–1808 (1982)

    Article  CAS  Google Scholar 

  27. Marcus, Y.: Solvent mixtures: properties and selective solvation, 1st edn. Marcel Dekker, New York (2002)

    Book  Google Scholar 

  28. Iwunze, M.O.: aqueous photophysical parameters of congo red. Spectrosc. Lett. 34, 16–21 (2010)

    Article  Google Scholar 

  29. Chattopadhyay, D.P.: 4—chemistry of dyeing. In: Clark, M. (ed.) Handbook of textile and industrial dyeing, pp. 150–183. Woodhead Publishing, Cambridge (2011)

    Chapter  Google Scholar 

  30. Alimmari, A., Mijin, D., Vukićević, R., Božić, B., Valentić, N., Vitnik, V., Vitnik, Z., Ušćumlić, G.: Synthesis, structure and solvatochromic properties of some novel 5-arylazo-6-hydroxy-4-phenyl-3-cyano-2-pyridone dyes. Chem. Central J. 6, 1–8 (2012)

    Article  Google Scholar 

  31. Mohammadi, A., Safarnejad, M.: Synthesis, structural characterization and tautomeric properties of some novel bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone. Spectrochim. Acta A 126, 105–111 (2014)

    Article  CAS  Google Scholar 

  32. Mukhopadhyay, A., Mandal, K.J., Moorthy, J.N.: Anionic merocyanine, dyes based on thiazol-2- hydrazides: reverse solvatochromism, preferential solvation and multiparametric approaches to spectral shifts. Phys. Chem. Chem. Phys. 20, 4149–4159 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Manzoni, V., Coutinho, K., Canuto, S.: An insightful approach for understanding solvatochromic reversal. Chem. Phys. Lett. 655–656, 30–34 (2016)

    Article  Google Scholar 

  34. Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. A comprehensive collection of the solvatochromic parameters, pi.*, alpha, and beta, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  35. del Valle, J.C., Garcia Blanco, F., Catalán, J.: Empirical parameters for solvent acidity, basicity, dipolarity and polarizability of ionic liquids [BMIM][BF4] and [BMIM][PF6]. J. Phys. Chem. B 119, 4683–4692 (2015)

    Article  PubMed  Google Scholar 

  36. Filarowski, M., Kluba, M., Cieslik-Boczula, K., Koll, A., Kochel, A., Pandey, L., De Borggraeve, W.M., Van der Auweraer, M., Catalán, J., Boens, N.: Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes. Photochem. Photobiol. Sci. 9, 996–1008 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. Airinel, A., Rusu, E., Dorohoi, D.: Solvent influence on the electronic absorption spectra of some azoaromatic compounds. Spectrosc. Lett. 34, 65–74 (2001)

    Article  Google Scholar 

  38. Sıdır, I., Tasxala, E., Gulsevena, Y., Gungor, T., Berberc, H., Ogretird, C.: Studies on solvatochromic behavior of some monoazo derivatives using electronic absorption spectra. Int. J. Hydrog. Energy 34, 5267–5273 (2009)

    Article  Google Scholar 

  39. Singh, H., Sindhu, J., Khurana, J.M.: Determination of dipole moment, solvatochromic studies and application as turn off fluorescence chemosensor of new 3-(4-(dimethyl amino) phenyl)-1-(5-methyl-1-(naphthalen-1-yl)-1H1,2,3-triazol-4-yl) prop-2-en-1-one. Sens. Actuators B 192, 536–542 (2014)

    Article  CAS  Google Scholar 

  40. Farajtabar, A., Jaberi, F., Gharib, F.: Preferential solvation and solvation shell composition of the free base and protonated 5, 10, 15, 20-tetrakis (4-sulfonatophenyl) porphyrin in aqueous organic mixed solvents. Spectrochim. Acta A 83, 213–220 (2011)

    Article  CAS  Google Scholar 

  41. Gharib, F., Shamel, A., Jaberi, F., Farajtabar, A.: Spectral investigation of preferential solvation and solute–solvent interactions of free base and protonated 5, 10, 15, 20-tetrakis (4-trimethyl-ammoniophenyl)-prophine tetratosylate in aqueous organic mixed solvents. J. Solution Chem. 42, 1083–1095 (2013)

    Article  CAS  Google Scholar 

  42. Buhvestov, U., Rived, F., Rafols, C., Bosch, E., Roses, M.: Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol-water mixtures measured by solvatochromic indicators. J. Phys. Org. Chem. 11, 185–192 (1998)

    Article  CAS  Google Scholar 

  43. Naderi, F., Farajtabar, A., Gharib, F.: Solvatochromic and preferential solvation of fluorescein in some water-alcoholic mixed solvents. J. Mol. Liq. 190, 126–132 (2014)

    Article  CAS  Google Scholar 

  44. Roses, M., Rafols, C., Ortega, J., Bosch, E.: Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation models for describing ET(30) polarity of dipolar hydrogen bond acceptor-cosolvent mixtures. J. Chem. Soc. Perkin Trans. 2, 1607–1615 (1995)

    Article  Google Scholar 

  45. Boroujeni, H.C., Gharib, F.: Solvatochromism and preferential solvation of deferiprone in some water-organic mixed solvents. J. Solution Chem. 45, 95–108 (2016)

    Article  CAS  Google Scholar 

  46. Hemdan, S.S., Gebali, A.M.A.L., Ali, F.K.: The electrostatic and non-electrostatic interaction affect on acidity constants of bromocresol purple in aqueous ethanolic media. J. Solution Chem. (2023). https://doi.org/10.1007/s10953-023-01270-7

    Article  Google Scholar 

  47. Marcus, Y.: The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. J. Chem. Soc. Perkin Trans. 2, 1751–1758 (1994)

    Article  Google Scholar 

  48. Migron, Y., Marcus, Y.: Polarity and hydrogen-bonding ability of some binary aqueous-organic mixtures. J. Chem. Soc. Faraday Trans. 87, 1339–1343 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Ali Farajtabar for his scientific and help in this research.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is revised by SSH.

Corresponding author

Correspondence to Sokaina Saad Hemdan.

Ethics declarations

Conflict of interest

The author declares that there is no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemdan, S.S. The Dependence of Absorption Spectrum of Congo Red on the Properties of Media: Solvatochromism, Switch Solvatochromism, Selective Solvation and Polarity Scales. J Solution Chem 53, 552–570 (2024). https://doi.org/10.1007/s10953-023-01301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01301-3

Keywords

Navigation