Skip to main content
Log in

Thermosolvatochromic Behavior of Quinolinium and Pyridinium 4-Hydroxystyryl Dyes in Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the current study a number of 4-hydroxystyryl dyes (4-HSD), 4-[-2-(4-hydroxy-3-methoxyphenyl)vinyl]-1-octylpyridinium bromide (4OP-MS) and 2-[2-(3,5-dimethyl-4-hydroxystyryl)]-1-methylquinoline iodide (2MQ-DMS), were synthesized and characterized using NMR, IR and Raman spectroscopy methods. The solvatochromic and thermochromic properties of their merocyanine form in solutions (water, ethanol, propanol-2, butanol-1) were observed and studied via UV–Vis spectrophotometry and tristimulus colorimetry methods. The sensitivity of the studied representatives to temperature changes in the range of 20.0–70.0 °C showed opposite thermochromic effects in solutions. Thus, the 4OP-MS shows a bathochromic shift of the spectrum (up to 17 nm) with increasing temperature and a significant increase in intensity in alcohol media (up to 3.5%—without taking into account the thermal expansion of the solvent). Under similar conditions, the 2MQ-DMS shows a significant decrease in intensity, which reaches 44% in the case of butanol, with practically no shifts in the light absorption maximum with temperature. When passing from aqueous to propanol-2 solutions, the thermosolvatochromic effect in the case of 4OP-MS increases slightly from 108 to 113 nm with an increase in temperature by 50.0 °C, and for 2MQ-DMS, on the contrary, it decreases from 64 to 48 nm. These effects indicate, on the one hand, the possibility of using such dyes to create liquid thermochromic systems, and on the other hand, the need to take them into account when creating and using molecular optical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. White, M.A., Leblanc, M.: Thermochromism in commercial products. J. Chem. Educ. 76, 1201–1205 (1999). https://doi.org/10.1021/ed076p1201

    Article  CAS  Google Scholar 

  2. Rijavec, T., Bračko, S.: Smart textiles for medicine and healthcare: materials. Systems and applications. Woodhead Publishing, London (2007)

    Google Scholar 

  3. Fukui, T., Saito, M., Sugi, M., Iizima, S.: Thermochromic behaviour of merocyanine Langmuir-Blodgett films. Thin Solid Films 109, 247–254 (1983). https://doi.org/10.1016/0040-6090(83)90114-1

    Article  CAS  Google Scholar 

  4. Ishchenko, A.A., Kulinich, A.V., Bondarev, S.L., Knyukshto, V.N., Turban, A.A.: Thermochromism and thermofluorochromism of merocyanines with a positive solvatochromism. Opt. Spectrosc. 101, 90–97 (2006). https://doi.org/10.1134/S0030400X06070162

    Article  CAS  Google Scholar 

  5. Homocianu, M.: Optical properties of solute molecules: environmental effects, challenges, and their practical implications. Microchem. J. (2021). https://doi.org/10.1016/j.microc.2020.105797

    Article  Google Scholar 

  6. Sawicka, M.J., Wróblewska, E.K., Lubkowski, K., Sośnicki, J.G.: Thermosolvatochromism of 7H-indolo [1, 2-a] quinolinium dyes in pure solvents. Dyes Pigm. (2021). https://doi.org/10.1016/j.dyepig.2020.109033

    Article  Google Scholar 

  7. Kulčar, R., Friškovec, M., Hauptman, N., Vesel, A., Gunde, M.K.: Colorimetric properties of reversible thermochromic printing inks. Dyes Pigm. 86, 271–277 (2010). https://doi.org/10.1016/j.dyepig.2010.01.014

    Article  CAS  Google Scholar 

  8. Chowdhury, M.A., Joshi, M., Butola, B.S.: Photochromic and thermochromic colorants in textile applications. J. Eng. Fibers Fabr. 9, 107–123 (2014). https://doi.org/10.1177/155892501400900113

    Article  Google Scholar 

  9. Hakami, A., Srinivasan, S.S., Biswas, P.K., Krishnegowda, A., Wallen, S.L., Stefanakos, E.K.: Review on thermochromic materials: development, characterization, and applications. J Coat Technol Res 19, 377–402 (2022). https://doi.org/10.1007/s11998-021-00558-x

    Article  CAS  Google Scholar 

  10. Kuswandi, B., Wicaksono, Y., Abdullah, A., Jayus, H.L.Y., Ahmad, M.: Smart packaging: sensors for monitoring of food quality and safety. Sens. Instrumen. Food Qual. 5, 137–146 (2011). https://doi.org/10.1007/s11694-011-9120-x

    Article  Google Scholar 

  11. Sadoh, A., Hossain, S., Ravindra, N.M.: Thermochromic polymeric films for applications in active intelligent packaging—an overview. Micromachines 12, 1193 (2021). https://doi.org/10.3390/mi12101193

    Article  PubMed  PubMed Central  Google Scholar 

  12. MacLaren, D.C., White, M.A.: Dye–developer interactions in the crystal violet lactone–lauryl gallate binary system: implications for thermochromism. J. Mater. Chem. 13, 1695–1700 (2003). https://doi.org/10.1039/B302249H

    Article  CAS  Google Scholar 

  13. White, G.D., Zartman, D.A., Bonicamp, J.M.: A serious look at changeable silly putty. Chem. Educator 5, 2–7 (2000). https://doi.org/10.1007/s00897990349a

    Article  CAS  Google Scholar 

  14. Avella-Oliver, M., Morais, S., Puchades, R., Maquieira, Á.: Towards photochromic and thermochromic biosensing. TrAC Trends Anal. Chem. 79, 37–45 (2016). https://doi.org/10.1016/j.trac.2015.11.021

    Article  CAS  Google Scholar 

  15. Nakazumi, H.: Spiropyran leuco dyes. In: Muthyala, R. (ed.) Chemistry and applications of Leuco dyes, pp. 1–45. Springer, Boston (2002)

    Google Scholar 

  16. Jeong, J.H., Kang, B.J., Kim, J.S., Jazbinsek, M., Lee, S.H., Lee, S.C., Baek, I.H., Yun, H., Kim, J., Lee, Y.S., Lee, J.H., Kim, J.H., Rotermund, F., Kwon, O.P.: High-power broadband organic THz generator. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep03200

    Article  Google Scholar 

  17. Kulinich, A.V., Ishchenko, A.A.: Merocyanine dyes: synthesis, structure, properties and applications. Russ. Chem. Rev. 78, 141–164 (2009). https://doi.org/10.1070/RC2009v078n02ABEH003900

    Article  CAS  Google Scholar 

  18. Starzak, K., Matwijczuk, A., Creaven, B., Matwijczuk, A., Wybraniec, S., Karcz, D.: Fluorescence quenching-based mechanism for determination of hypochlorite by coumarin-derived sensors. Int. J. Mol. Sci. 20, 281 (2019). https://doi.org/10.3390/ijms20020281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karcz, D., Matwijczuk, A., Boroń, B., Creaven, B., Fiedor, L., Niewiadomy, A., Gagoś, M.: Isolation and spectroscopic characterization of Zn (II), Cu (II), and Pd (II) complexes of 1, 3, 4-thiadiazole-derived ligand. J. Mol. Struct. 1128, 44–50 (2017). https://doi.org/10.1016/j.molstruc.2016.08.042

    Article  CAS  Google Scholar 

  20. Starzak, K., Świergosz, T., Matwijczuk, A., Creaven, B., Podleśny, J., Karcz, D.: Anti-hypochlorite, antioxidant, and catalytic activity of three polyphenol-rich super-foods investigated with the use of coumarin-based sensors. Biomolecules 10, 723 (2020). https://doi.org/10.3390/biom10050723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nandi, L.G., Nicoleti, C.R., Bellettini, I.C., Machado, V.G.: Optical chemosensor for the detection of cyanide in water based on ethyl (hydroxyethyl) cellulose functionalized with brooker’s merocyanine. Anal. Chem. 86, 4653–4656 (2014). https://doi.org/10.1021/ac501233x

    Article  CAS  PubMed  Google Scholar 

  22. Krieg, R., Eitner, A., Günther, W., Halbhuber, K.J.: Optimization of heterocyclic 4-hydroxystyryl derivatives for histological localization of endogenous and immunobound peroxidase activity. Biotech. Histochem. 82, 235–262 (2007). https://doi.org/10.1080/10520290701714013

    Article  CAS  PubMed  Google Scholar 

  23. Park, H., Chang, S.K.: Signaling of water content in organic solvents by solvatochromism of a hydroxynaphthalimide-based merocyanine dye. Dyes Pigm. 122, 324–330 (2015). https://doi.org/10.1016/j.dyepig.2015.07.010

    Article  CAS  Google Scholar 

  24. Sahoo, P.R., Prakash, K., Kumar, A., Kumar, S.: Efficient reversible optical sensing of water achieved through the conversion of H-aggregates of a merocyanine salt to J-aggregates. ChemistrySelect 2, 5924–5932 (2017). https://doi.org/10.1002/slct.201700940

    Article  CAS  Google Scholar 

  25. Snigur, D.V., Zhukova, Y.P., Studenyak, Y.I., Chebotarev, A.N.: Colorimetric determination of water in DMSO using 4-hydroxystyryl dyes. J. Appl. Spec. 87, 407–411 (2020). https://doi.org/10.1007/s10812-020-01015-0

    Article  CAS  Google Scholar 

  26. Chebotarev, A.N., Snigur, D.V., Zhukova, Y.P., Bevziuk, K.V., Studenyak, Y.I., Bazel, Y.R.: Tristimulus colorimetric and spectrophotometric study of the state of 4-hydroxystyryl dyes in aqueous solutions. Russ. J. Gen. Chem. 87, 196–203 (2017). https://doi.org/10.1134/S1070363217020074

    Article  CAS  Google Scholar 

  27. Van Bezouw, S., Campo, J., Lee, S.H., Kwon, O.P., Wenseleers, W.: Organic compounds with large and high-contrast pH-switchable Nonlinear optical response. J. Phys. Chem. C 119, 21658–21663 (2015). https://doi.org/10.1021/acs.jpcc.5b06968

    Article  CAS  Google Scholar 

  28. Fidale, L.C., Heinze, T., El Seoud, O.A.: Perichromism: A powerful tool for probing the properties of cellulose and its derivatives. Carbohydr. Polym. 93, 129–134 (2013). https://doi.org/10.1016/j.carbpol.2012.06.061

    Article  CAS  PubMed  Google Scholar 

  29. Snigur, D., Fizer, M., Chebotarev, A., Lukianova, O., Bevziuk, K.: Protonation of quinoline yellow WS in aqueous solutions: spectroscopic and DFT theoretical studies. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2020.114881

    Article  Google Scholar 

  30. Chebotarev, A.N., Snigur, D.V.: Study of acid-base properties of morin by tristimulus colorimetry. Russ. J. Gen. Chem. 86, 815–820 (2016). https://doi.org/10.1134/S1070363216040095

    Article  CAS  Google Scholar 

  31. Chebotarev, A.N., Bevziuk, K.V., Snigur, D.V., Bazel, Y.R.: The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data. Russ. J. Phys. Chem. A 91, 1907–1912 (2017). https://doi.org/10.1134/S0036024417100089

    Article  CAS  Google Scholar 

  32. Snigur, D., Fizer, M., Chebotarev, A., Lukianova, O., Zhukovetska, O.: Spectroscopic and computational studies of erythrosine food dye protonation in aqueous solution. Dyes Pigm. (2022). https://doi.org/10.1016/j.dyepig.2021.110028

    Article  Google Scholar 

  33. MacAdam, D.L.: Determination of tristimulus values. In: Color Measurement. Berlin, Heidelberg (1985)

  34. Ivanov, V.M., Monogarova, O.V., Oskolok, K.V.: Capabilities and prospects of the development of a chromaticity method in analytical chemistry. J. Anal. Chem. 70, 1165–1178 (2015). https://doi.org/10.1134/S1061934815100111

    Article  CAS  Google Scholar 

  35. Hisamoto, H., Tohma, H., Yamada, T., Yamauchi, K., Siswanta, D., Yoshioka, N., Suzuki, K.: Molecular design, characterization, and application of multi-information dyes for multi-dimensional optical chemical sensing. Molecular design concepts of the dyes and their fundamental spectral characteristics. Anal. Chim. Acta. (1998). https://doi.org/10.1016/S0003-2670(98)00421-8

    Article  Google Scholar 

  36. Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Arakawa, H.: Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J. Phys. Chem. B 106, 1363–1371 (2002). https://doi.org/10.1021/jp0129380

    Article  CAS  Google Scholar 

  37. Martins, C.T., Lima, M.S., Bastos, E.L., El Seoud, O.A.: Thermo-solvatochromism of merocyanine polarity probes–what are the consequences of increasing probe lipophilicity through annelation? Eur. J. Org. Chem. 7, 165–1180 (2008). https://doi.org/10.1002/ejoc.200700805

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Yuliya Zhukova is grateful to the National Scholarship Programme of the Slovak Republic (contract number 31903) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Yuliya Zhukova - spectrophotometric studies of dyes; Yaroslav Studenyak - synthesis of dyes; Ruslan Mariychuk - IR and Raman spectroscopic study of dyes; Denys Snigur - studies by tristumulus colorimetry. All authors wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Denys Snigur.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, Y., Studenyak, Y., Mariychuk, R. et al. Thermosolvatochromic Behavior of Quinolinium and Pyridinium 4-Hydroxystyryl Dyes in Solutions. J Solution Chem 52, 870–880 (2023). https://doi.org/10.1007/s10953-023-01277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01277-0

Keywords

Navigation