Skip to main content
Log in

Determination of Abraham Model Solute Descriptors for N-Hydroxyphthalimide: An Organic Compound Having a N-Hydroxy (N–OH) Functional Group

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Mole fraction solubilities are reported for N-hydroxyphthalimide dissolved in 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol, 2-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, cyclopentanol, 1-hexanol, 4-methyl-2-pentanol, 1-heptanol, 1-octanol, isopropyl acetate, butyl acetate, tert-butyl acetate, pentyl acetate, methyl butyrate, dimethyl carbonate and propanenitrile at 298.15 K based on spectroscopic measurements. Results of experimental measurements, combined with published solubility data taken from the published chemical literature, were used to calculate the Abraham model solute descriptors for N-hydroxyphthalimide. The derived solute descriptors back-calculate the observed solubility data to within 0.098 log10 units. Comparison of the calculated solute descriptors of N-hydroxyphthalimide to those of monofuncational alkanolic and phenolic compounds reveals that the hydrogen-bond acidity of the N–OH hydroxyl group is similar to that in monofunctional phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ruddigkeit, L., van Deursen, R., Blum, L.C., Reymond, J.-L.: Enumeration of 166 billion organic small molecules in the Chemical Universe Database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Clarke, C.J., Tu, W.-C., Levers, O., Brohl, A., Hallett, J.P.: Green and sustainable solvents in chemical processes. Chem. Rev. 118, 747–800 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. Schulze, S., Saettler, D., Neumann, M., Arp, H.P.H., Reemtsma, T., Berger, U.: Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals. Sci. Total Environ. 625, 1122–1128 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Fantke, P., Aurisano, N., Provoost, J., Karamertzanis, P.G., Hauschild, M.: Toward effective use of REACH data for science and policy. Environ. Int. 135, 105336/1-105336/6 (2020)

    Article  Google Scholar 

  5. Dearden, J.C., Cronin, M.T.D., Kaiser, K.L.E.: How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 20, 241–266 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Katritzky, A.R., Maran, U., Lobanov, V.S., Karelson, M.: Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. J. Chem. Inf. Comput. Sci. 40, 1–18 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Katritzky, A.R., Petrukhin, R., Tatham, D., Basak, S., Benfenati, E., Karelson, M., Maran, U.: Interpretation of quantitative structure-property and -activity relationships. J. Chem. Inf. Comput. Sci. 41, 679–685 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Varadharajan, A., Sinha, S., Xu, A., Daniel, A., Kim, K., Shanmugam, N., Wu, E., Yang, C., Zhang, M., Acree, W.E., Jr.: Development of Abraham Model correlations for describing solute transfer into Transcutol based on molar solubility ratios for pharmaceutical and other organic compounds. J. Solution Chem. 52, 70–90 (2023)

    Article  CAS  Google Scholar 

  9. Magsumov, T.I., Sedov, I.A., Acree, W.E., Jr.: Development of predictive expressions for infinite dilution activity coefficients, molar solubilities and partition coefficients for solutes dissolved in 2-pyrrolidone based on the Abraham solvation parameter model. J. Solution Chem. 51, 975–991 (2022)

    Article  CAS  Google Scholar 

  10. Abraham, M.H., Acree, W.E., Jr., Rafols, C., Roses, M.: Equations for the correlation and prediction of partition coefficients of neutral molecules and ionic species in the water-isopropanol solvent system. J. Solution Chem. 50, 458–472 (2021)

    Article  CAS  Google Scholar 

  11. Sedov, I.A., Magsumov, T.I., Hart, E., Higgins, E., Grover, D., Zettl, H., Zad, M., Acree, W.E., Jr., Abraham, M.H.: Abraham Model expressions for describing water-to-diethylene glycol and gas-to-diethylene glycol solute transfer processes at 298.15 K. J. Solution Chem. 46, 331–351 (2017)

    Article  CAS  Google Scholar 

  12. Sedov, I.A., Salikov, T.M., Khaibrakhmanova, D.R., Wadawadigi, A., Zha, O., Qian, E., Hart, E., Barrera, M., Acree, W.E., Jr.: Abraham, Michael H., Determination of Abraham model correlations for solute transfer into propyl acetate based on experimental activity coefficient and solubility data. J. Solution Chem. 47, 634–653 (2018)

    Article  CAS  Google Scholar 

  13. Sedov, I.A., Magsumov, T.I., Hart, E., Ramirez, A.M., Cheeran, S., Barrera, M., Horton, M.Y., Wadawadigi, A., Zha, O., Tong, X.Y., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for triethylene glycol solvent derived from infinite dilution activity coefficient, partition coefficient and solubility data measured at 298.15 K. J. Solution Chem. 46, 2249–2267 (2017)

    Article  CAS  Google Scholar 

  14. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)

    Article  CAS  Google Scholar 

  15. Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037, 29–47 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree, W.E., Jr.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Jalan, A., Ashcraft, R.W., West, R.H., Green, W.H.: Predicting solvation energies for kinetic modeling. Annu. Rep. Prog. Chem Sec. C: Phys. Chem. 106, 211–258 (2010)

    Article  CAS  Google Scholar 

  18. Clarke, E.D., Mallon, L.: The determination of Abraham descriptors and their application to crop protection research. In: Jeschke, P., Krämer, W., Schirmer, U., Witschel, M. (eds.) Modern methods in crop protection research. Wiley, New York (2012)

    Google Scholar 

  19. Clarke, E.D.: Beyond physical properties–application of Abraham descriptors and LFER analysis in agrochemical research Bioorg. Med. Chem. 17, 4153–4159 (2020)

    Google Scholar 

  20. Poole, C.F., Ariyasena, T.C., Lenca, N.: Estimation of the environmental properties of compounds from chromatographic properties and the solvation parameter method. J. Chromatogr. A. 1317, 85–104 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Poole, C.F., Atapattu, S.N.: Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J. Chromatogr. A 1687, 463682-463682/25 (2022)

    Article  PubMed  Google Scholar 

  22. Sinha, S., Yang, C., Wu, E., Acree, W.E., Jr.: Abraham solvation parameter model: examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids 2, 131–146 (2022)

    Article  CAS  Google Scholar 

  23. Jiang, B., Horton, M.Y., Acree, W.E., Jr., Abraham, M.H.: Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-1-methylimidazolium and octyltriethylammonium cations. Phys. Chem. Liq. 55, 358–385 (2017)

    Article  CAS  Google Scholar 

  24. Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree, W.E., Jr., Abraham, M.H.: Development of Abraham model expressions for predicting the enthalpies of solvation of solutes dissolved in acetic acid. Phys. Chem. Liq. 54, 141–154 (2016)

    Article  CAS  Google Scholar 

  25. Magsumov, T.I., Sedov, I.A., Acree, W.E., Jr.: Development of Abraham model correlations for enthalpies of solvation of solutes dissolved in N-methylformamide, 2-pyrrolidone and N-methylpyrrolidone. J. Mol. Liq. 323, 114609/1-114609/10 (2021)

    Article  Google Scholar 

  26. Lu, J.Z., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N,N-Dimethylacetamide, 2-butanone and tetrahydrofuran (UPATED) at 298.15 K. Phys. Chem. Liq. 58, 675–692 (2020)

    Article  CAS  Google Scholar 

  27. Mohammadian, E., Jouyban, A., Barzegar-Jalali, M., Acree, W.E., Jr., Rahimpour, E.: Solubilization of naproxen: experimental data and computational tools. J. Mol. Liq. 288, 110985/1-110985/7 (2019)

    Article  Google Scholar 

  28. Mohammadian, E., Foroumadi, A., Hasanvand, Z., Rahimpour, E., Zhao, H., Jouyban, A.: Simulation of mesalazine solubility in the binary solvents at various temperatures. J. Mol. Liq. 357, 119160/1-119160/9 (2022)

    Article  Google Scholar 

  29. Jouyban, A., Rahimpour, E., Karimzadeh, Z., Zhao, H.: Simulation of dapsone solubility data in mono- and mixed-solvents at various temperatures. J. Mol. Liq. 345, 118223/1-118223/9 (2022)

    Article  Google Scholar 

  30. Rahimpour, E., Jouyban, A.: Utilizing Abraham and Hansen solvation parameters for solubility prediction of meloxicam in cosolvency systems. J. Mol. Liq. 328, 115400/1-115400/8 (2021)

    Article  Google Scholar 

  31. Rahimpour, E., Xu, R., Zhao, H., Acree, W.E., Jr., Jouyban, A.: Simulation of clozapine solubility in mono- and mixed solvents at different temperatures. J. Solution Chem. 51, 1540–1570 (2022)

    Article  CAS  Google Scholar 

  32. Jouyban, A., Acree, W.E., Jr.: A single model to represent physico-chemical properties of liquid mixtures at various temperatures. J. Mol. Liq. 323, 115054/1-115054/11 (2021)

    Article  Google Scholar 

  33. Jouyban, A., Maljaei, S.H., Soltanpour, Sh., Fakhree, M.A.A.: Prediction of viscosity of binary solvent mixtures at various temperatures. J. Mol. Liq. 162, 50–68 (2011)

    Article  CAS  Google Scholar 

  34. Jouyban, A., Maljaei, S.H., Khoubnasabjafari, M., Fathi-Azarbayjani, A.: A global model to predict density of non-aqueous binary solvent mixtures at various temperatures. Indian J. Chem. 51A, 695–698 (2012)

    CAS  Google Scholar 

  35. Abraham, M.H., Acree, W.E., Jr.: Estimation of vapor pressures of liquid and solid organic and organometallic compounds at 298.15 K. Fluid Phase Equilibr. 519, 112595/1-112595/5 (2020)

    Article  Google Scholar 

  36. Saunders, R.A., Platts, J.A.: Correlation and prediction of critical micelle concentration using polar surface area and LFER methods. J. Phys. Org. Chem. 17, 431–438 (2004)

    Article  CAS  Google Scholar 

  37. Churchill, B., Acree, W.E., Jr., Abraham, M.H.: Development of Abraham model expressions for predicting the standard molar enthalpies of vaporization of organic compounds at 298.15 K. Thermochim. Acta 681, 178372/1-178372/6 (2019)

    Article  Google Scholar 

  38. Abraham, M.H., Acree, W.E., Jr.: Estimation of enthalpies of sublimation of organic, organometallic and inorganic compounds. Fluid Phase Equilib. 515, 112575–112575 (2020)

    Article  Google Scholar 

  39. Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, G., Abraham, M.H., Goss, K.-U.: UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017. Accessed on 1 Dec 2022. Available from http://www.ufz.de/lserd

  40. Chung, Y., Vermeire, F.H., Wu, H., Walker, P.J., Abraham, M.H., Green, W.H.: Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. J. Chem. Inf. Model. 62, 433–446 (2022)

    Article  CAS  PubMed  Google Scholar 

  41. Ulrich, N., Ebert, A.: Can deep learning algorithms enhance the prediction of solute descriptors for linear solvation energy relationship approaches? Fluid Phase Equilib. 555, 113349/1-113349/7 (2022)

    Article  Google Scholar 

  42. Cheng, Y., Wang, Q., Wang, L., Li, X.: Solubility of N-hydroxyphthalimide in binary acetic acid + water solvent mixtures at (293.2 to 363.2) K. J. Chem. Eng. Data 52, 1025–1027 (2007)

    Article  CAS  Google Scholar 

  43. He, H., Wan, Y., Jiang, G., Sun, R., Sha, J., Li, Y., Li, T., Ren, B.: Solubility determination, model evaluation, Hansen solubility parameter and thermodynamic properties of N-hydroxyphthalimide in eleven neat solvents. J. Mol. Liq. 325, 114677–114677 (2021)

    Article  CAS  Google Scholar 

  44. ACD/Labs Percepta Platform—PhysChem Module. Accessed on 1 Dec 2022. https://www.acdlabs.com/products/percepta-platform/

  45. ChemSpider database, Royal Society of Chemistry. Accessed on 1 Dec 2022, http://www.chemspider.com/Chemical-Structure.10215.html

  46. Acree, W.E., Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of benzil solubilities with the Abraham general solvation model. J. Solution Chem 31, 293–303 (2002)

    Article  CAS  Google Scholar 

  47. Fletcher, K.A., Hernandez, C.E., Roy, L.E., Coym, K.S., Acree, W.E., Jr.: Solubility of diphenyl sulfone in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon the general solvation model. Can. J. Chem. 77, 1214–1217 (1999)

    Article  CAS  Google Scholar 

  48. Blake-Taylor, B.H., Deleon, V.H., Acree, W.E., Jr., Abraham, M.H.: Mathematical correlation of salicylamide solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 45, 389–398 (2007)

    Article  CAS  Google Scholar 

  49. Longacre, L., Wu, E., Yang, C., Zhang, M., Sinha, S., Varadharajan, A., Acree, W.E., Jr.: Development of Abraham model correlations for solute transfer into the tert-butyl acetate mono-solvent and updated equations for both ethyl acetate and butyl acetate. Liquids 2, 258–288 (2022)

    Article  CAS  Google Scholar 

  50. Xu, A., Varadharajan, A., Shanmugam, N., Kim, K., Huang, E., Cai, S.K., Acree, W.E., Jr.: Abraham model description of the solubilising properties of the isopropyl acetate organic mono-solvent. Phys. Chem. Liq. 60, 312–324 (2022)

    Article  CAS  Google Scholar 

  51. Cai, S.K., Huang, E., Kim, K., Shanmugam, N., Varadharajan, A., Xu, A., Acree, W.E., Jr.: Development of Abraham model correlations for solute transfer into cyclopentanol from both water and the gas phase based on measured solubility ratios. Phys. Chem. Liq. 60, 287–296 (2022)

    Article  CAS  Google Scholar 

  52. Strickland, S., Ocon, L., Zhang, A., Wang, S., Eddula, S., Liu, G., Tirumala, P., Huang, J., Dai, J., Jiang, C., Acree, W.E., Abraham, M.H.: Abraham model correlations for describing dissolution of organic solutes and inorganic gases in dimethyl carbonate. Phys. Chem. Liq. 59, 181–195 (2021)

    Article  CAS  Google Scholar 

  53. Abraham, M.H., McGowan, J.C.: The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23, 243–246 (1987)

    Article  CAS  Google Scholar 

  54. Absolv. ADME Suite 5.0, advanced chemistry development. 110 Yonge Street, 14th Floor, Toronto, Ontario, M5C 1T4. Canada. The ACD Freeware available from: http://www.acdlabs.com/

  55. Wildman, S.A., Crippen, G.M.: Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 39, 868–873 (1999)

    Article  CAS  Google Scholar 

  56. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R., Robins, R.K.: Atomic physicochemical parameters for three-dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comp. Sci. 29, 163–172 (1989)

    Article  CAS  Google Scholar 

  57. Naef, R., Acree, W.E., Jr.: Revision and extension of a generally applicable group-additivity method for the calculation of the refractivity and polarizability of organic molecules. Liquids 2, 327–377 (2022)

    Article  CAS  Google Scholar 

  58. Abraham, M.H., Acree, W.E., Jr., Earp, C.E., Vladimirova, A., Whaley, W.L.: Studies on hydrogen bond acidity, and other descriptors and properties for hydroxyflavones and hydroxyisoflavones. J. Mol. Liq. 208, 363–372 (2017)

    Article  Google Scholar 

  59. Acree, W.E., Jr., Smart, K., Abraham, M.H.: Abraham model solute descriptors reveal strong intramolecular hydrogen bonding in 1,4-dihydroxyanthraquinone and 1,8-dihydroxyanthraquinone. Phys. Chem. Liq. 56, 416–420 (2018)

    Article  CAS  Google Scholar 

  60. Sinha, S., Varadharajan, A., Xu, A., Wu, E., Acree, W.E., Jr.: Determination of Abraham model solute descriptors for hippuric acid from measured molar solubilities in several organic mono-solvents of varying polarity and hydrogen-bonding ability. Phys. Chem. Liq. 60, 563–571 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EY, AZ, SW, NS, AV, SS and EW performed the experimental measurements and calculations. WA wrote the main manuscript text, and also performed part of the calculations and data analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to William E. Acree Jr..

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, E., Zhou, A., Wu, S. et al. Determination of Abraham Model Solute Descriptors for N-Hydroxyphthalimide: An Organic Compound Having a N-Hydroxy (N–OH) Functional Group. J Solution Chem 52, 895–909 (2023). https://doi.org/10.1007/s10953-023-01276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01276-1

Keywords

Navigation