Skip to main content
Log in

Acidity Constant Estimation of Weakly Acidic Polyelectrolyte by Linear Approximation: A Case Study for Polyphosphate via Gran’s Approach

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The acidity constant values (Ka or pKa) and polyionic species distribution are valuable tools to identify the extent of ionization and complexing properties of polyionic species. They are of great importance to predict the charged state of analyte and choose the appropriate condition in the design of functional materials for their intended purposes. Polyphosphates, being one of the anionic types of polyelectrolytes, have attracted interest for utilization in a quite wide range of applications in the boundaries of nanomaterial, bio-analytical chemistry, and physical sciences. In this study, it is aimed to estimate the intrinsic pK oa of polyphosphoric acid (PPH) with high molar mass and the charge of its polyanionic conjugate base (PP), \((Z_{{\text{PP}}^{-}})\), according to activity coefficient estimation by Davies using potentiometric titration along with the theoretical consideration of Gran’s approach. Besides, a series of PPH titration was simulated via CurTiPot and the data were further treated in MATLAB to visualize the 3-D pH surfaces of PPH/PP pairs. As a result, the outcomes of experimental work and simulations were consistent very well, and pK oa of PPH and \(Z_{{\text{PP}}^{-}}\) were found as 2.22 ± 0.01 and − 1.105 ± 0.003, respectively, at a 95% confidence interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Richardson, J.J., Björnmalm, M., Caruso, F.: Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015). https://doi.org/10.1126/science.aaa2491

    Article  CAS  PubMed  Google Scholar 

  2. der Meeren, L.V., Li, J., Parakhonskiy, B.V., Krysko, D.V., Skirtach, A.G.: Classification of analytics, sensorics, and bioanalytics with polyelectrolyte multilayer capsules. Anal. Bioanal. Chem. 412, 5015–5029 (2020). https://doi.org/10.1007/s00216-020-02428-8

    Article  CAS  PubMed  Google Scholar 

  3. Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997). https://doi.org/10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  4. Schaaf, P., Schlenoff, J.B.: Saloplastics: processing compact polyelectrolyte complexes. Adv. Mater. 27, 2420–2432 (2015). https://doi.org/10.1002/adma.201500176

    Article  CAS  PubMed  Google Scholar 

  5. Roca, S., Dhellemmes, L., Leclercq, L., Cottet, H.: Polyelectrolyte multilayers in capillary electrophoresis. ChemPlusChem 87, e202200028 (2022). https://doi.org/10.1002/cplu.202200028

    Article  CAS  PubMed  Google Scholar 

  6. Dautzenberg, H., Jaeger, W., Kötz, J., Philipp, B., Seidel, C., Stscherbina, D.: Polyelectrolytes: Formation, Characterization and Application. Carl Hanser Verlag, Munich (1994)

    Google Scholar 

  7. Asuero, A.G., Michalowski, T.: Comprehensive formulation of titration curves for complex acid-base systems and its analytical implications. Crit. Rev. Anal. Chem. 41, 151–187 (2011). https://doi.org/10.1080/10408347.2011.559440

    Article  CAS  Google Scholar 

  8. Wallace, M., Adams, D.J., Iggo, J.A.: Titrations without the additions: the efficient determination of pKa values using NMR imaging techniques. Anal. Chem. 90, 4160–4166 (2018). https://doi.org/10.1021/acs.analchem.8b00181

    Article  CAS  PubMed  Google Scholar 

  9. Wiczling, P., Waszczuk-Jankowska, M., Markuszewski, M.J., Kaliszan, R.: The application of gradient reversed-phase high-performance liquid chromatography to the pKa and log Kw determination of polyprotic analytes. J. Chromatogr. A. 1214, 109–114 (2008). https://doi.org/10.1016/j.chroma.2008.10.085

    Article  CAS  PubMed  Google Scholar 

  10. Nowak, P.M., Leszczenko, P., Zarusińska, J., Kościelniak, P.: Acidity constant of pH indicators in the supramolecular systems studied by two CE-based methods compared using the RGB additive color model. Anal. Bioanal. Chem. 412, 577–588 (2020). https://doi.org/10.1007/s00216-019-02289-w

    Article  CAS  PubMed  Google Scholar 

  11. Nowak, P., Woźniakiewicz, M., Kościelniak, P.: Application of capillary electrophoresis in determination of acid dissociation constant values. J. Chromatogr. A. 1377, 1–12 (2015). https://doi.org/10.1016/j.chroma.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  12. Šolínová, V., Kašička, V.: Determination of acidity constants and ionic mobilities of polyprotic peptide hormones by CZE. Electrophoresis 34, 2655–2665 (2013). https://doi.org/10.1002/elps.201300119

    Article  CAS  PubMed  Google Scholar 

  13. Liu, B., Tian, Y., Yu, Q., Li, Q., Mu, W., Tan, Z., Wu, F., Wang, D., Li, X.: Determination of protonation constants of o-Phospho-l-serine in aqueous solution: Potentiometry, microcalorimetry, NMR spectroscopy and quantum chemical calculations. J. Solution Chem. 46, 2281–2292 (2017). https://doi.org/10.1007/s10953-017-0696-6

    Article  CAS  Google Scholar 

  14. Meloun, M., Pilařová, L., Pfeiferová, A., Pekárek, T.: Method of UV-metric and pH-metric determination of dissociation constants of ionizable drugs: Valsartan. J. Solution Chem. 48, 1266–1286 (2019). https://doi.org/10.1007/s10953-019-00913-y

    Article  CAS  Google Scholar 

  15. Koort, E., Gans, P., Herodes, K., Pihl, V., Leito, I.: Acidity constants in different media (I = 0 and I = 0.1 M KCl) from the uncertainty perspective. Anal. Bioanal. Chem. 385, 1124–1139 (2006). https://doi.org/10.1007/s00216-006-0519-x

    Article  CAS  PubMed  Google Scholar 

  16. Benet, L.Z., Goyan, J.E.: Potentiometric determination of dissociation constants. J. Pharm. Sci. 56, 665–680 (1967)

    Article  CAS  PubMed  Google Scholar 

  17. Reijenga, J., van Hoof, A., van Loon, A., Teunissen, B.: Development of methods for the determination of pKa values. Anal. Chem. Insights. 8, 53–71 (2013). https://doi.org/10.4137/ACI.S12304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jano, I., Hardcastle, J., Jano, L.A., Bates, K.R., McCreary, H.E.: General equation for determining the dissociation constants of polyprotic acids and bases from additive properties Part IV. Application to potentiometric titration. Anal. Chim. Acta. 428, 309–321 (2001). https://doi.org/10.1016/S0003-2670(00)01242-3

    Article  CAS  Google Scholar 

  19. Maslarska, V., Tencheva, J., Budevsky, O.: New approach in the treatment of data from an acid-base potentiometric titration. Anal. Bioanal. Chem. 375, 217–222 (2003). https://doi.org/10.1007/s00216-002-1671-6

    Article  CAS  PubMed  Google Scholar 

  20. Michałowski, T., Toporek, M., Rymanowski, M.: Overview on the Gran and other linearisation methods applied in titrimetric analyses. Talanta 65, 1241–1253 (2005). https://doi.org/10.1016/j.talanta.2004.08.053

    Article  CAS  PubMed  Google Scholar 

  21. Gran, G.: Determination of the equivalent point in potentiometric titrations. Acta Chem. Scand. 4, 559–577 (1950). https://doi.org/10.3891/acta.chem.scand.04-0559

    Article  CAS  Google Scholar 

  22. Cini, N., Ball, V.: Polyphosphates as inorganic polyelectrolytes interacting with oppositely charged ions, polymers and deposited on surfaces: Fundamentals and applications. Adv. Colloid Interface Sci. 209, 84–97 (2014). https://doi.org/10.1016/j.cis.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  23. Davies, C.W.: The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. J. Chem. Society Part II (1938). https://doi.org/10.1039/JR9380002093

    Article  Google Scholar 

  24. Gutz, I.G.R.: CurTiPot – pH and Acid–Base Titration Curves: Analysis and Simulation Software, Version 4.3.1. http://www.iq.usp.br/gutz/Curtipot_.html, Retrieved 2021,11th January (2021)

  25. MATLAB, version 9.5.0.944444 (R2018b). The MathWorks Inc., Natick, Massachusetts, United States (2018)

  26. Klingenberg, J.J., Kim, H.Z.: Preparation and analysis by ion exchange techniques of sodium salts of mandelic acid derivatives. Ohio J. Sci. 66, 587–590 (1966)

    CAS  Google Scholar 

  27. Griffith, E.J.: The chemical and physical properties of condensed phosphates. Pure Appl. Chem. 44, 173–200 (1975). https://doi.org/10.1351/pac197544020173

    Article  CAS  Google Scholar 

  28. Thilo, E.: Condensed phosphates and arsenates. Adv. Inorg. Chem. Radiochem. 4, 1–75 (1962). https://doi.org/10.1016/S0065-2792(08)60265-4

    Article  CAS  Google Scholar 

  29. De Jager, H.J., Heyns, A.M.: Kinetics of acid-catalyzed hydrolysis of a polyphosphate in water. J. Phys. Chem. A. 102, 2838–2841 (1998). https://doi.org/10.1021/jp9730252

    Article  Google Scholar 

  30. Zinder, B., Hertz, J., Oswald, H.R.: Kinetic studies on the hydrolysis of sodium tripolyphosphate in sterile solution. Water Res. 18, 509–512 (1984). https://doi.org/10.1016/0043-1354(84)90196-9

    Article  CAS  Google Scholar 

  31. Dickman, S.R., Bray, R.H.: Colorimetric determination of phosphate. Ind. Eng. Chem. - Anal. Ed. 12, 665–668 (1940). https://doi.org/10.1021/ac50151a013

    Article  CAS  Google Scholar 

  32. Momeni, A., Filiaggi, M.J.: Comprehensive study of the chelation and coacervation of alkaline earth metals in the presence of sodium polyphosphate solution. Langmuir 30, 5256–5266 (2014). https://doi.org/10.1021/la500474j

    Article  CAS  PubMed  Google Scholar 

  33. Katchalsky, A., Gillis, J.: Theory of the potentiometric titration of polymeric acids. Rec. Trav. Chim. Pays-Bas. 68, 879–897 (1949)

    Article  CAS  Google Scholar 

  34. Smith, G.C., Hossain, M.M., MacCarthy, P.: 3-D surface visualization of pH titration “topos”: equivalence point cliffs, dilution ramps, and buffer plateaus. J. Chem. Ed. 91, 225–231 (2014). https://doi.org/10.1021/ed400297t

    Article  CAS  Google Scholar 

  35. Lorenz, B., Schröder, H.C.: Methods for Investigation of Inorganic Polyphosphates and Polyphosphate-Metabolizing Enzymes. In: Schroder, H.C., Müller, W.E.G. (eds.) Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology, Progress In Molecular And Subcellular Biology Book Series, 23, pp. 217–239. Springer-Verlag, Heidelberg, Germany (1999)

    Chapter  Google Scholar 

  36. Wazer, J.R.V., Holst, K.A.: Structure and properties of the condensed phosphates. I. Some general considerations about phosphoric acids. J. Am. Chem. Soc. 72, 639–644 (1950). https://doi.org/10.1097/00007611-192203000-00016

    Article  Google Scholar 

  37. Wall, F.T., Doremus, R.H.: Electrolytic transference properties of polyphosphates. J. Am. Chem. Soc. 76, 868–870 (1954). https://doi.org/10.1021/ja01632a069

    Article  CAS  Google Scholar 

  38. Callis, C.F., Wazer, J.R.V., Arvan, P.G.: The inorganic phosphates as polyelectrolytes. Chem. Rev. 54, 777–796 (1954)

    Article  CAS  Google Scholar 

  39. Mandel, M.: The potentiometric titration of weak polyacids. Eur. Polym. J. 6, 807–822 (1970)

    Article  CAS  Google Scholar 

  40. Porasso, R.D., Benegas, J.C., van den Hoop, M.A.G.T., Paoletti, S.: Analysis of potentiometric titrations of heterogeneous natural polyelectrolytes in terms of counterion condensation theory: Application to humic acid. Biophys. Chem. 86, 59–69 (2000). https://doi.org/10.1016/S0301-4622(00)00159-9

    Article  CAS  PubMed  Google Scholar 

  41. Nová, L., Uhlík, F., Košovan, P.: Local pH and effective pKA of weak polyelectrolytes-insights from computer simulations. Phys. Chem. Chem. Phys. 19, 14376–14387 (2017). https://doi.org/10.1039/c7cp00265c

    Article  PubMed  Google Scholar 

  42. Ghasemi, M., Larson, R.G.: Role of electrostatic interactions in charge regulation of weakly dissociating polyacids. Prog. Polym. Sci. 112(10132), 1–11 (2021). https://doi.org/10.1016/j.progpolymsci.2020.101322

    Article  CAS  Google Scholar 

  43. Wazer, J.R.V., Callis, C.F.: Metal complexing by phosphates. Chem. Rev. 58, 1011–1046 (1958)

    Article  Google Scholar 

  44. Robinson, T.E., Arkinstall, L.A., Cox, S.C., Grover, L.M.: Determining the structure of hexametaphosphate by titration and 31P-NMR spectroscopy. Comments Inorg. Chem. 42, 47–59 (2022). https://doi.org/10.1080/02603594.2021.1973444

    Article  CAS  Google Scholar 

  45. Vleugels, L.F.W., Ricois, S., Voets, I.K., Tuinier, R.: Determination of the ‘apparent pKa’ of selected food hydrocolloids using ortho-toluidine blue. Food Hydrocoll. 81, 273–283 (2018)

    Article  CAS  Google Scholar 

  46. Kodama, H., Miyajima, T., Mori, M., Takahashi, M., Nishimura, H., Ishiguro, S.: A unified analytical treatment of the acid-dissociation equilibria of weakly acidic linear polyelectrolytes and the conjugate acids of weakly basic linear polyelectrolytes. Colloid Polym. Sci. 275, 938–945 (1997). https://doi.org/10.1007/s003960050169

    Article  CAS  Google Scholar 

  47. Ibrahim, A., Koval, D., Kašička, V., Faye, C., Cottet, H.: Effective charge determination of dendrigraft poly- l -lysine by capillary isotachophoresis. Macromolecules 46, 533–540 (2013). https://doi.org/10.1021/ma302125f

    Article  CAS  Google Scholar 

  48. Manning, G.S.: Counterion binding in polyelectrolyte theory. Acc. Chem. Res. 12, 443–449 (1979). https://doi.org/10.1021/ar50144a004

    Article  CAS  Google Scholar 

  49. Stuart, M.C., de Vries, R., Lyklema, H.: Chapter 2—Polyelectrolytes. In: Lyklema, J. (ed.) Fundamentals of Interface and Colloid Science: Soft Colloids, vol. 5, p. 2.1-2.84. Academic Press, Amsterdam (2005). https://doi.org/10.1016/S1874-5679(05)80006-6

    Chapter  Google Scholar 

  50. Kitano, T., Kawaguchi, S., Ito, K., Minakata, A.: Dissociation behavior of poly(fumaric acid) and poly (maleic acid). 1. Potentiometric titration and intrinsic viscosity. Macromolecules 20, 1598–1606 (1987). https://doi.org/10.1021/ma00173a028

    Article  CAS  Google Scholar 

  51. Tømmeraas, K., Wahlund, P.O.: Poly-acid properties of biosynthetic hyaluronan studied by titration. Carbohydr. Polym. 77, 194–200 (2009). https://doi.org/10.1016/j.carbpol.2008.12.021

    Article  CAS  Google Scholar 

  52. Fechner, M., Koetz, J.: Potentiometric behavior of polyampholytes based on N,N–diallyl–N,N–dimethylammonium chloride and maleamic acid derivatives. Macromol. Chem. Phys. 212, 2691–2699 (2011). https://doi.org/10.1002/macp.201100532

    Article  CAS  Google Scholar 

  53. Rueda, C., Arias, C., Galera, P., López-Cabarcos, E., Yagüe, A.: Mucopolysaccharides in aqueous solutions: effect of ionic strength on titration curves. Farmaco 56, 527–532 (2001). https://doi.org/10.1016/S0014-827X(01)01106-5

    Article  CAS  PubMed  Google Scholar 

  54. Debye, P., Hückel, E.: Zur Theorie der elektrolyte. Phys. Zeitschrift. 24, 185–206 (1923)

    CAS  Google Scholar 

  55. Maechling, C., Ball, V.: Exothermic-endothermic transition in the titration of poly(allylamine chloride) with sodium hexametaphoshate associated with a change in the proton release regime. J. Phys. Chem. B. 120, 4732–4741 (2016). https://doi.org/10.1021/acs.jpcb.6b02709

    Article  CAS  PubMed  Google Scholar 

  56. Bohinc, K., Kovačević, D., Požar, J.: Protonation equilibrium of the poly(allylammonium) cation in an aqueous solution of binary 1:1 electrolytes. Phys. Chem. Chem. Phys. 15, 7210–7219 (2013). https://doi.org/10.1039/c3cp50302j

    Article  CAS  PubMed  Google Scholar 

  57. Tang, C.L., Alexov, E., Pyle, A.M., Honig, B.: Calculation of pKas in RNA: On the structural origins and functional roles of protonated nucleotides. J. Mol. Biol. 366, 1475–1496 (2007). https://doi.org/10.1016/j.jmb.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  58. Inoue, M., Yamada, H., Hashimoto, Y., Yasukochi, T., Hamaguchi, K., Miki, T., Horiuchi, T., Imoto, T.: Stabilization of a protein by removal of unfavorable abnormal pKa: Substitution of undissociable residue for glutamic acid-35 in chicken lysozyme. Biochemistry 31, 8816–8821 (1992). https://doi.org/10.1021/bi00152a018

    Article  CAS  PubMed  Google Scholar 

  59. Koper, G.J.M., Borkovec, M.: Proton binding by linear, branched, and hyperbranched polyelectrolytes. Polymer 51, 5649–5662 (2010). https://doi.org/10.1016/j.polymer.2010.08.067

    Article  CAS  Google Scholar 

  60. Salehi, A., Larson, R.G.: A molecular thermodynamic model of complexation in mixtures of oppositely charged polyelectrolytes with explicit account of charge association/dissociation. Macromolecules 49, 9706–9719 (2016). https://doi.org/10.1021/acs.macromol.6b01464

    Article  CAS  Google Scholar 

  61. Nagasawa, M., Holtzer, A.: The use of the Debye–Hückel approximation in the analysis of protein potentiometric titration data. J. Am. Chem. Soc. 86, 531–538 (1964). https://doi.org/10.1021/ja01058a001

    Article  CAS  Google Scholar 

  62. Karimvand, S.K., Nguyen, X.A., Abdollahi, H., Burns, R., Clifford, S., Maeder, M., McCann, N., Neuhold, Y.M., Puxty, G.: Activity-based analysis of potentiometric pH titrations. Anal. Chim. Acta. 1075, 49–56 (2019). https://doi.org/10.1016/j.aca.2019.05.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author greatly thanks Istanbul Technical University (ITU) for providing MATLAB R2018b facilities.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

N.C. contributed to the study conception and design, performed material preparation, data collection and analysis, wrote the first draft, revised, edited, read, and approved the final manuscript.

Corresponding author

Correspondence to Nejla Cini.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102207 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cini, N. Acidity Constant Estimation of Weakly Acidic Polyelectrolyte by Linear Approximation: A Case Study for Polyphosphate via Gran’s Approach. J Solution Chem 52, 823–837 (2023). https://doi.org/10.1007/s10953-023-01275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01275-2

Keywords

Navigation