Abstract
This study is seeking a better understanding of polyethylene glycol (PEG) as a solvent to promote its use in chemical synthesis. The effect of adding two solutes of interest, 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) and 5-tert-butylisophthalic acid (5-TBIPA) to PEG200 (average molar weight of 200 g·mol−1) on the solution density, viscosity, and self-diffusion coefficients is monitored in a temperature range of 298.15–358.15 K to deduce how these solutes interact with the PEG200 solvent. The effect of water, the most common impurity in PEGs, is also monitored and found to be nearly negligibly small. Addition of (5-TBIPA) increases solution density and viscosity. Combined with the observation that 5-TBIPA consistently self-diffuses at about half the rate as PEG200 at all investigated experimental conditions, this suggests strong attractive solute–solvent interactions likely through hydrogen bonding interactions. In contrast, addition of TEMPO causes lower solution densities and viscosities suggesting that the solute–solvent interactions of TEMPO lead to an overall weakening of the intermolecular interactions present compared to neat PEG200. Inspection of the viscosity and self-diffusion temperature dependence reveals slight deviations from the Arrhenius equation. Interestingly, the activation energies obtained from the viscosity and the self-diffusion data are essentially identical in values suggesting that the same dynamic processes and thus the same activation barriers govern translational motion and momentum transfer in these PEG200 solutions.
Graphical Abstract
Similar content being viewed by others
Data Availability
All data generated or analyzed during this study are included in this published article [and its supplementary information files].
References
Kardooni, R., Kiasat, A.R.: Polyethylene glycol as a green and biocompatible reaction media for the catalyst free synthesis of organic compounds. Curr. Org. Chem. 24(12), 1275–1314 (2020). https://doi.org/10.2174/1385272824999200605161840
Campos, J.F., Berteina-Raboin, S.: Greener synthesis of nitrogen-containing heterocycles in water, PEG, and bio-based solvents. Catalysts 10(4), 429 (2020). https://doi.org/10.3390/catal10040429
Soni, J., Sahiba, N., Sethiya, A., Agarwal, S.: Polyethylene glycol: A promising approach for sustainable organic synthesis. J. Mol. Liq. 315, 113766 (2020). https://doi.org/10.1016/j.molliq.2020.113766
Polyethylene glycol market size, share & trends analysis report by application (medical, personal care, industrial), by region (North America, Europe, Asia Pacific, Row), and segment rorecasts, 2015–2020. https://www.grandviewresearch.com/industry-analysis/polyethylene-glycol-peg-market Accessed 07/08/2021.
Gullapalli, R.P., Mazzitelli, C.L.: Polyethylene glycols in oral and parenteral formulations–a critical review. Int. J. Pharm. 496(2), 219–239 (2015). https://doi.org/10.1016/j.ijpharm.2015.11.015
Hutanu, D.: Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod. Chem. Appl. 2(2), 6 (2014). https://doi.org/10.4172/2329-6798.1000132
Kong, X.B., Tang, Q.Y., Chen, X.Y., Tu, Y., Sun, S.Z., Sun, Z.L.: Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural. Regen. Res. 12(6), 1003–1008 (2017). https://doi.org/10.4103/1673-5374.208597
Calvo-Flores, F.G., Monteagudo-Arrebola, M.J., Dobado, J.A., Isac-Garcia, J.: Green and bio-based solvents. Top. Curr. Chem. 376(3), 18 (2018). https://doi.org/10.1007/s41061-018-0191-6
McGarvey, P.W., Hoffmann, M.M.: Solubility of some mineral salts in polyethylene glycol and related surfactants. Tens. Surf. Deterg. 55(3), 203–209 (2018)
Xiong, W.W., Zhang, Q.: Surfactants as promising media for the preparation of crystalline inorganic materials. Angew. Chem. Internat. Edit. 54(40), 11616–11623 (2015). https://doi.org/10.1002/anie.201502277
Forsyth, C., Taras, T., Johnson, A., Zagari, J., Collado, C., Hoffmann, M.M., et al.: Microwave assisted surfactant-thermal synthesis of metal-organic framework materials. Appl. Sci. 10(13), 4563 (2020). https://doi.org/10.3390/app10134563
Hoffmann, M.M.: Polyethylene glycol as a green chemical solvent. Curr. Opin. Colloid Interface Sci. (2022). https://doi.org/10.1016/j.cocis.2021.101537
Hoffmann, M.M., Horowitz, R.H., Gutmann, T., Buntkowsky, G.: Densities, viscosities, and self-diffusion coefficients of ethylene glycol oligomers. J. Chem. Eng. Data. 66(6), 2480–2500 (2021). https://doi.org/10.1021/acs.jced.1c00101
Hoffmann, M.M., Kealy, J.D., Gutmann, T., Buntkowsky, G.: Densities, viscosities, and self-diffusion coefficients of several polyethylene glycols. J. Chem. Eng. Data. 67(1), 88–103 (2021). https://doi.org/10.1021/acs.jced.1c00759
Beejapur, H.A., Zhang, Q., Hu, K., Zhu, L., Wang, J., Ye, Z.: TEMPO in chemical transformations: From homogeneous to heterogeneous. ACS Catal. 9(4), 2777–2830 (2019). https://doi.org/10.1021/acscatal.8b05001
Prakash, N., Rajeev, R., John, A., Vijayan, A., George, L., Varghese, A.: 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) radical mediated electro-oxidation reactions: A review. ChemistrySelect 6(30), 7691–7710 (2021). https://doi.org/10.1002/slct.202102346
Nakagawa, K.: EPR investigations of spin-probe dynamics in aqueous dispersions of a nonionic amphiphilic compound. J. Am. Oil Chem. Soc. 86(1), 1 (2008). https://doi.org/10.1007/s11746-008-1317-8
Jahnke, W.: Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. ChemBioChem 3(2–3), 167–173 (2002). https://doi.org/10.1002/1439-7633(20020301)3:2/3%3c167::Aid-cbic167%3e3.0.Co;2-s
Thankamony, A.S.L., Wittmann, J.J., Kaushik, M., Corzilius, B.: Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. (2017). https://doi.org/10.1016/j.pnmrs.2017.06.002
Bothe, S., Nowag, J., Klimavičius, V., Hoffmann, M., Troitskaya, T.I., Amosov, E.V., et al.: Novel biradicals for direct excitation highfield dynamic nuclear polarization. J. Phys. Chem. C. 122(21), 11422–11432 (2018). https://doi.org/10.1021/acs.jpcc.8b02570
Casano G, Karoui H, Ouari O. Polarizing agents: Evolution and outlook in free radical development for DNP. eMagRes. 2018, 195–208.
Kubicki, D.J., Casano, G., Schwarzwälder, M., Abel, S., Sauvée, C., Ganesan, K., et al.: Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci. 7(1), 550–558 (2016). https://doi.org/10.1039/C5SC02921J
Sauvée, C., Casano, G., Abel, S., Rockenbauer, A., Akhmetzyanov, D., Karoui, H., et al.: Tailoring of polarizing agents in the bTurea series for cross-effect dynamic nuclear polarization in aqueous media. Chem. Eur. J. 22(16), 5598–5606 (2016). https://doi.org/10.1002/chem.201504693
Lund, A., Casano, G., Menzildjian, G., Kaushik, M., Stevanato, G., Yulikov, M., et al.: TinyPols: A family of water-soluble binitroxides tailored for dynamic nuclear polarization enhanced NMR spectroscopy at 18.8 and 21.1 T. Chem. Sci. 11(10), 2810–8 (2020). https://doi.org/10.1039/C9SC05384K
Mentink-Vigier, F., Marin-Montesinos, I., Jagtap, A.P., Halbritter, T., van Tol, J., Hediger, S., et al.: Computationally assisted design of polarizing agents for dynamic nuclear polarization enhanced NMR: The AsymPol family. J. Am. Chem. Soc. 140(35), 11013–11019 (2018). https://doi.org/10.1021/jacs.8b04911
Francesconi, R., Ottani, S.: Correlation of density and refraction index for liquid binary mixtures containing polyglycols: Use of the group contributions in the Lorentz–Lorenz, Gladstonez–Dale and Vogel equations to evaluate the density of mixtures. J. Mol. Liq. 133(1–3), 125–33 (2007). https://doi.org/10.1016/j.molliq.2006.07.001
Comelli, F., Ottani, S.: Excess enthalpies, densities, viscosities, and refractive indices of binary mixtures involving some poly(glycols) + diethyl carbonate at 308.15 K. J. Chem. Eng. Data. 49(4), 970–5 (2004). https://doi.org/10.1021/je034274o
Adam, O.E.-A.A., Hassan, A.A.: Volumetric properties of binary mixtures of o-cresol + poly(ethylene glycols) in the temperature range 288.15–308.15 K and atmospheric pressure. Phys. Chem. Liq. 56(1), 55–68 (2018). https://doi.org/10.1080/00319104.2017.1292424
Nain, A.K., Ansari, S., Ali, A.: Densities, refractive indices, ultrasonic speeds and excess properties of acetonitrile + poly(ethylene glycol) binary mixtures at temperatures from 298.15 to 313.15 K. J. Solution Chem. 43(6), 1032–54 (2014). https://doi.org/10.1007/s10953-014-0189-9
Živković, N.V., Šerbanović, S.S., Kijevčanin, M.L., Živković, E.M.: Volumetric and viscometric behavior of binary systems 2-butanol + PEG 200, + PEG 400, + tetraethylene glycol dimethyl ether, and + N-methyl-2-pyrrolidone. J. Chem. Eng. Data. 58(12), 3332–3341 (2013). https://doi.org/10.1021/je400486p
Živković, N., Šerbanović, S., Kijevčanin, M., Živković, E.: Volumetric properties, viscosities, and refractive indices of the binary systems 1-butanol + PEG 200, + PEG 400, and + TEGDME. Int. J. Thermophys. 34(6), 1002–1020 (2013). https://doi.org/10.1007/s10765-013-1469-0
Vuksanović, J.M., Radović, I.R., Šerbanović, S.P., Kijevčanin, M.L.: Experimental investigation of interactions and thermodynamic properties of poly(ethylene glycol) 200/400 + dimethyl adipate/dimethyl phthalate binary mixtures. J. Chem. Eng. Data. 60(6), 1910–1925 (2015). https://doi.org/10.1021/acs.jced.5b00156
Ali, A., Ansari, S., Nain, A.K.: Densities, refractive indices and excess properties of binary mixtures of dimethylsulphoxide with some poly(ethylene glycol)s at different temperatures. J. Mol. Liq. 178, 178–184 (2013). https://doi.org/10.1016/j.molliq.2012.12.002
Comelli, F., Ottani, S., Francesconi, R., Castellari, C.: Densities, viscosities, refractive indices, and excess molar enthalpies of binary mixtures containing poly(ethylene glycol) 200 and 400 + dimethoxymethane and + 1,2-dimethoxyethane at 298.15 K. J. Chem. Eng. Data. 47(5), 1226–31 (2002). https://doi.org/10.1021/je0255224
Živković, E.M., Živković, N.V., Majstorović, D.M., Stanimirović, A.M., Kijevčanin, M.L.: Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes. J. Chem. Thermodyn. 119, 135–154 (2018). https://doi.org/10.1016/j.jct.2017.12.023
Francesconi, R., Bigi, A., Rubini, K., Comelli, F.: Molar heat capacities, densities, viscosities, and refractive indices of poly(ethylene glycols) + 2-methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data. 52(5), 2020–5 (2007). https://doi.org/10.1021/je7003066
Yasmin, M., Gupta, M.: Density, viscosity, velocity and refractive index of binary mixtures of poly(ethylene glycol) 200 with ethanolamine, m-cresol and aniline at 298.15 K. J. Solution Chem. 40(8), 1458–72 (2011). https://doi.org/10.1007/s10953-011-9731-1
Awwad, A.M., Al-Dujaili, A.H., Salman, H.E.: Relative permittivities, densities, and refractive indices of the binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and poly(ethylene glycol) at 303.15 K. J. Chem. Eng. Data. 47(3), 421–4 (2002). https://doi.org/10.1021/je010259c
Wu, T.-Y., Chen, B.-K., Hao, L., Lin, K.-F., Sun, I.W.: Thermophysical properties of a room temperature ionic liquid (1-methyl-3-pentyl-imidazolium hexafluorophosphate) with poly(ethylene glycol). J. Taiwan Inst. Chem. Engin. 42(6), 914–921 (2011). https://doi.org/10.1016/j.jtice.2011.04.006
Hemmat, M., Moosavi, M., Dehghan, M., Mousavi, E., Rostami, A.A.: Thermodynamic, transport and optical properties of formamide + 1,2-ethanediol, 1,3-propanediol and poly (ethylene glycol) 200 binary liquid mixtures. J. Mol. Liq. 233, 222–235 (2017). https://doi.org/10.1016/j.molliq.2017.03.008
Moosavi, M., Omrani, A., Ali Rostami, A., Motahari, A.: Isobaric, isothermal theoretical investigation and examination of different prediction equations on some physicochemical properties in PEG liquid polymer system. J. Chem. Thermodyn. 68, 205–215 (2014). https://doi.org/10.1016/j.jct.2013.09.006
Wu, T.-Y., Chen, B.-K., Hao, L., Lin, Y.-C., Wang, H.P., Kuo, C.-W., et al.: Physicochemical properties of glycine-based ionic liquid [QuatGly-OEt][EtOSO3] (2-Ethoxy-1-ethyl-1,1-dimethyl-2-oxoethanaminium ethyl sulfate) and its binary mixtures with poly(ethylene glycol) (MW = 200) at various temperatures. Int. J. Mol. Sci. 12, 8750–8772 (2011). https://doi.org/10.3390/ijms12128750
Chaudhary, N., Nain, A.K.: Densities, speeds of sound, refractive indices, excess and partial molar properties of polyethylene glycol 200 + methyl acrylate or ethyl acrylate or n-butyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 271, 501–13 (2018). https://doi.org/10.1016/j.molliq.2018.09.020
Sengwa, R.J., Dhatarwal, P., Choudhary, S.: Static permittivities, viscosities, refractive indices and electrical conductivities of the binary mixtures of acetonitrile with poly(ethylene glycol)-200 at temperatures 288.15–318.15 K. J. Mol. Liq. 271, 128–35 (2018). https://doi.org/10.1016/j.molliq.2018.08.137
Sengwa, R.J., Choudhary, S., Dhatarwal, P.: Dielectric and electrical behaviour over the static permittivity frequency regime, the refractive indices and viscosities of PC-PEG binary mixtures. J. Mol. Liq. 252, 339–350 (2018). https://doi.org/10.1016/j.molliq.2017.12.139
Yasmin, M., Gupta, M., Shukla, J.P.: Experimental and computational study on viscosity and optical dielectric constant of solutions of poly (ethylene glycol) 200. J. Mol. Liq. 160(1), 22–29 (2011). https://doi.org/10.1016/j.molliq.2011.02.005
Branco, A.S.H., Calado, M.S., Fareleira, J.M.N.A., Visak, Z.P., Canongia Lopes, J.N.: Refraction index and molar refraction in ionic liquid/PEG200 solutions. J. Solution Chem. 44(3–4), 431–439 (2015). https://doi.org/10.1007/s10953-014-0277-x
Sengwa, R.J., Sankhla, S., Sharma, S.: Refractometric study of polymers and their blends in solution. Indian J. Chem. Sect. A. 46A(9), 1419–22 (2007)
Van Geet, A.L.: Calibration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermister probe. Anal. Chem. 40, 2227–2229 (1968)
Jerschow, A., Müller, N.: 3D diffusion-ordered TOCSY for slowly diffusing molecules. J. Magn. Reson. A. 123, 222–225 (1996)
Jerschow, A., Müller, N.: Suppression of convection artifacts in stimulated-echo diffusion experiments: Double-stimulated-echo experiments. J. Magn. Reson. 125, 372–375 (1997)
Nicolay, K., Braun, K.P.J., de Graaf, R.A., Dijkhuizen, R.M., Kruiskamp, M.J.: Diffusion NMR spectroscopy. NMR Biomed. 14, 94–111 (2001)
Hoffmann, M.M., Bothe, S., Gutmann, T., Buntkowsky, G.: Combining freezing point depression and self-diffusion data for characterizing aggregation. J. Phys. Chem. B. 122(18), 4913–4921 (2018). https://doi.org/10.1021/acs.jpcb.8b03456
Tammann, G., Hesse, W.: Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156(1), 245–257 (1926). https://doi.org/10.1002/zaac.19261560121
Garland, C.W., Nibler, J.W., Shoemaker, D.P.: Experiments in Physical Chemistry, 8th edn. McGraw-Hill, New York (2009)
Zuccaccia, D., Maccioni, A.: An accurate methodology to identify the level of aggregation in solution by PGSE NMR measurements: The case of half-sandwich diamino ruthenium(II) salts. Organometallics 24(14), 3476–3486 (2005)
Hayamizu, K., Tsuzuki, S., Seki, S., Fujii, K., Suenaga, M., Umebayashi, Y.: Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J. Chem. Phys. 133(19), 194505 (2010). https://doi.org/10.1063/1.3505307
Macchioni, A., Ciancaleoni, G., Zuccaccia, C., Zuccaccia, D.: Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem. Soc. Rev. 37, 479–489 (2008)
Chen, H.-C., Chen, S.-H.: Diffusion of crown ethers in alcohols. J. Phys. Chem. 88, 5118–5121 (1984)
Gierer, A., Wirtz, K.: Molecular theory of microfriction. Z. Naturforsch. A. 8, 532–538 (1953)
Van der Bondi, A.: Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)
Edward, J.T.: Molecular volumes and the Stokes–Einstein equation. J. Chem. Educ. 47, 261–270 (1970)
Hoffmann, M.M., Too, M.D., Paddock, N.A., Horstmann, R., Kloth, S., Vogel, M., et al.: On the behavior of the ethylene glycol components of polydisperse polyethylene glycol PEG200. J. Phys. Chem. B. 127, 1178–1196 (2023)
Chang, I., Fujara, F., Geil, B., Heuberger, G., Mangel, T., Sillescu, H.: Translational and rotational molecular motion in supercooled liquids studied by NMR and forced Rayleigh scattering. J. Non-Cryst. Solids. 172–174, 248–255 (1994)
Cicerone, M.T., Ediger, M.D.: Enhanced translation of probe molecules in supercooled o-terphenyl: Signature of spatially heterogeneous dynamics? J. Chem. Phys. 104, 7210–7218 (1996)
Hoffmann, M.M., Bothe, S., Gutmann, T., Buntkowsky, G.: Unusual local molecular motions in the solid state detected by dynamic nuclear polarization enhanced NMR spectroscopy. J. Phys. Chem. C. 121(41), 22948–22957 (2017). https://doi.org/10.1021/acs.jpcc.7b07965
Hoffmann, M.M., Too, M.D., Vogel, M., Gutmann, T., Buntkowsky, G.: Breakdown of the Stokes-Einstein equation for solutions of water in oil reverse micelles. J. Phys. Chem. B. 124(41), 9115–9125 (2020). https://doi.org/10.1021/acs.jpcb.0c06124
Turton, D.A., Wynne, K.: Stokes–Einstein–Debye failure in molecular orientational diffusion: exception or rule? J. Phys. Chem. B. 118(17), 4600–4604 (2014). https://doi.org/10.1021/jp5012457
Yamaguchi, T.: Decoupling between solvent viscosity and diffusion of a small solute induced by self-motion. J Phys Chem Lett. 12(32), 7696–7700 (2021). https://doi.org/10.1021/acs.jpclett.1c02219
Kumar, A., Singh, T., Gardas, R.L., Coutinho, Jo.A.P.: Non-ideal behaviour of a room temperature ionic liquid in an alkoxyethanol or poly ethers at T=(298.15 to 318.15)K. J. Chem. Thermodyn. 40(1), 32–9 (2008). https://doi.org/10.1016/j.jct.2007.06.002
Funding
This report is based upon work supported by the National Science Foundation under Grant No. [1953428] and the Deutsche Forschungsgemeinschaft (DFG) under grant Bu 911/24-2. The latter included a Mercator fellowship for MMH to support research stays at the Technical University Darmstadt.
Author information
Authors and Affiliations
Contributions
Conceptualization, methodology, and supervision were performed by MH; formal analysis and investigation by NR, NP, MA, MH; writing—original draft preparation—by MH; writing—review and editing—by MH, NR, MA, NP, TG, and GB; funding acquisition by GB, TG, MH; resources by MH, GB.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing financial interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hoffmann, M.M., Randall, N.P., Apak, M.H. et al. Solute–Solvent Interactions of 2,2,6,6-Tetramethylpiperidinyloxyl and 5-Tert-Butylisophthalic Acid in Polyethylene Glycol as Observed by Measurements of Density, Viscosity, and Self-Diffusion Coefficient. J Solution Chem 52, 685–707 (2023). https://doi.org/10.1007/s10953-023-01265-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-023-01265-4