Skip to main content
Log in

Solute–Solvent Interactions of 2,2,6,6-Tetramethylpiperidinyloxyl and 5-Tert-Butylisophthalic Acid in Polyethylene Glycol as Observed by Measurements of Density, Viscosity, and Self-Diffusion Coefficient

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This study is seeking a better understanding of polyethylene glycol (PEG) as a solvent to promote its use in chemical synthesis. The effect of adding two solutes of interest, 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) and 5-tert-butylisophthalic acid (5-TBIPA) to PEG200 (average molar weight of 200 g·mol−1) on the solution density, viscosity, and self-diffusion coefficients is monitored in a temperature range of 298.15–358.15 K to deduce how these solutes interact with the PEG200 solvent. The effect of water, the most common impurity in PEGs, is also monitored and found to be nearly negligibly small. Addition of (5-TBIPA) increases solution density and viscosity. Combined with the observation that 5-TBIPA consistently self-diffuses at about half the rate as PEG200 at all investigated experimental conditions, this suggests strong attractive solute–solvent interactions likely through hydrogen bonding interactions. In contrast, addition of TEMPO causes lower solution densities and viscosities suggesting that the solute–solvent interactions of TEMPO lead to an overall weakening of the intermolecular interactions present compared to neat PEG200. Inspection of the viscosity and self-diffusion temperature dependence reveals slight deviations from the Arrhenius equation. Interestingly, the activation energies obtained from the viscosity and the self-diffusion data are essentially identical in values suggesting that the same dynamic processes and thus the same activation barriers govern translational motion and momentum transfer in these PEG200 solutions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Kardooni, R., Kiasat, A.R.: Polyethylene glycol as a green and biocompatible reaction media for the catalyst free synthesis of organic compounds. Curr. Org. Chem. 24(12), 1275–1314 (2020). https://doi.org/10.2174/1385272824999200605161840

    Article  CAS  Google Scholar 

  2. Campos, J.F., Berteina-Raboin, S.: Greener synthesis of nitrogen-containing heterocycles in water, PEG, and bio-based solvents. Catalysts 10(4), 429 (2020). https://doi.org/10.3390/catal10040429

    Article  CAS  Google Scholar 

  3. Soni, J., Sahiba, N., Sethiya, A., Agarwal, S.: Polyethylene glycol: A promising approach for sustainable organic synthesis. J. Mol. Liq. 315, 113766 (2020). https://doi.org/10.1016/j.molliq.2020.113766

    Article  CAS  Google Scholar 

  4. Polyethylene glycol market size, share & trends analysis report by application (medical, personal care, industrial), by region (North America, Europe, Asia Pacific, Row), and segment rorecasts, 2015–2020. https://www.grandviewresearch.com/industry-analysis/polyethylene-glycol-peg-market Accessed 07/08/2021.

  5. Gullapalli, R.P., Mazzitelli, C.L.: Polyethylene glycols in oral and parenteral formulations–a critical review. Int. J. Pharm. 496(2), 219–239 (2015). https://doi.org/10.1016/j.ijpharm.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  6. Hutanu, D.: Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod. Chem. Appl. 2(2), 6 (2014). https://doi.org/10.4172/2329-6798.1000132

    Article  CAS  Google Scholar 

  7. Kong, X.B., Tang, Q.Y., Chen, X.Y., Tu, Y., Sun, S.Z., Sun, Z.L.: Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural. Regen. Res. 12(6), 1003–1008 (2017). https://doi.org/10.4103/1673-5374.208597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calvo-Flores, F.G., Monteagudo-Arrebola, M.J., Dobado, J.A., Isac-Garcia, J.: Green and bio-based solvents. Top. Curr. Chem. 376(3), 18 (2018). https://doi.org/10.1007/s41061-018-0191-6

    Article  CAS  Google Scholar 

  9. McGarvey, P.W., Hoffmann, M.M.: Solubility of some mineral salts in polyethylene glycol and related surfactants. Tens. Surf. Deterg. 55(3), 203–209 (2018)

    Article  CAS  Google Scholar 

  10. Xiong, W.W., Zhang, Q.: Surfactants as promising media for the preparation of crystalline inorganic materials. Angew. Chem. Internat. Edit. 54(40), 11616–11623 (2015). https://doi.org/10.1002/anie.201502277

    Article  CAS  Google Scholar 

  11. Forsyth, C., Taras, T., Johnson, A., Zagari, J., Collado, C., Hoffmann, M.M., et al.: Microwave assisted surfactant-thermal synthesis of metal-organic framework materials. Appl. Sci. 10(13), 4563 (2020). https://doi.org/10.3390/app10134563

    Article  CAS  Google Scholar 

  12. Hoffmann, M.M.: Polyethylene glycol as a green chemical solvent. Curr. Opin. Colloid Interface Sci. (2022). https://doi.org/10.1016/j.cocis.2021.101537

    Article  Google Scholar 

  13. Hoffmann, M.M., Horowitz, R.H., Gutmann, T., Buntkowsky, G.: Densities, viscosities, and self-diffusion coefficients of ethylene glycol oligomers. J. Chem. Eng. Data. 66(6), 2480–2500 (2021). https://doi.org/10.1021/acs.jced.1c00101

    Article  CAS  Google Scholar 

  14. Hoffmann, M.M., Kealy, J.D., Gutmann, T., Buntkowsky, G.: Densities, viscosities, and self-diffusion coefficients of several polyethylene glycols. J. Chem. Eng. Data. 67(1), 88–103 (2021). https://doi.org/10.1021/acs.jced.1c00759

    Article  CAS  Google Scholar 

  15. Beejapur, H.A., Zhang, Q., Hu, K., Zhu, L., Wang, J., Ye, Z.: TEMPO in chemical transformations: From homogeneous to heterogeneous. ACS Catal. 9(4), 2777–2830 (2019). https://doi.org/10.1021/acscatal.8b05001

    Article  CAS  Google Scholar 

  16. Prakash, N., Rajeev, R., John, A., Vijayan, A., George, L., Varghese, A.: 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) radical mediated electro-oxidation reactions: A review. ChemistrySelect 6(30), 7691–7710 (2021). https://doi.org/10.1002/slct.202102346

    Article  CAS  Google Scholar 

  17. Nakagawa, K.: EPR investigations of spin-probe dynamics in aqueous dispersions of a nonionic amphiphilic compound. J. Am. Oil Chem. Soc. 86(1), 1 (2008). https://doi.org/10.1007/s11746-008-1317-8

    Article  CAS  Google Scholar 

  18. Jahnke, W.: Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. ChemBioChem 3(2–3), 167–173 (2002). https://doi.org/10.1002/1439-7633(20020301)3:2/3%3c167::Aid-cbic167%3e3.0.Co;2-s

    Article  CAS  PubMed  Google Scholar 

  19. Thankamony, A.S.L., Wittmann, J.J., Kaushik, M., Corzilius, B.: Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. (2017). https://doi.org/10.1016/j.pnmrs.2017.06.002

    Article  Google Scholar 

  20. Bothe, S., Nowag, J., Klimavičius, V., Hoffmann, M., Troitskaya, T.I., Amosov, E.V., et al.: Novel biradicals for direct excitation highfield dynamic nuclear polarization. J. Phys. Chem. C. 122(21), 11422–11432 (2018). https://doi.org/10.1021/acs.jpcc.8b02570

    Article  CAS  Google Scholar 

  21. Casano G, Karoui H, Ouari O. Polarizing agents: Evolution and outlook in free radical development for DNP. eMagRes. 2018, 195–208.

  22. Kubicki, D.J., Casano, G., Schwarzwälder, M., Abel, S., Sauvée, C., Ganesan, K., et al.: Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci. 7(1), 550–558 (2016). https://doi.org/10.1039/C5SC02921J

    Article  CAS  PubMed  Google Scholar 

  23. Sauvée, C., Casano, G., Abel, S., Rockenbauer, A., Akhmetzyanov, D., Karoui, H., et al.: Tailoring of polarizing agents in the bTurea series for cross-effect dynamic nuclear polarization in aqueous media. Chem. Eur. J. 22(16), 5598–5606 (2016). https://doi.org/10.1002/chem.201504693

    Article  CAS  PubMed  Google Scholar 

  24. Lund, A., Casano, G., Menzildjian, G., Kaushik, M., Stevanato, G., Yulikov, M., et al.: TinyPols: A family of water-soluble binitroxides tailored for dynamic nuclear polarization enhanced NMR spectroscopy at 18.8 and 21.1 T. Chem. Sci. 11(10), 2810–8 (2020). https://doi.org/10.1039/C9SC05384K

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mentink-Vigier, F., Marin-Montesinos, I., Jagtap, A.P., Halbritter, T., van Tol, J., Hediger, S., et al.: Computationally assisted design of polarizing agents for dynamic nuclear polarization enhanced NMR: The AsymPol family. J. Am. Chem. Soc. 140(35), 11013–11019 (2018). https://doi.org/10.1021/jacs.8b04911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Francesconi, R., Ottani, S.: Correlation of density and refraction index for liquid binary mixtures containing polyglycols: Use of the group contributions in the Lorentz–Lorenz, Gladstonez–Dale and Vogel equations to evaluate the density of mixtures. J. Mol. Liq. 133(1–3), 125–33 (2007). https://doi.org/10.1016/j.molliq.2006.07.001

    Article  CAS  Google Scholar 

  27. Comelli, F., Ottani, S.: Excess enthalpies, densities, viscosities, and refractive indices of binary mixtures involving some poly(glycols) + diethyl carbonate at 308.15 K. J. Chem. Eng. Data. 49(4), 970–5 (2004). https://doi.org/10.1021/je034274o

    Article  CAS  Google Scholar 

  28. Adam, O.E.-A.A., Hassan, A.A.: Volumetric properties of binary mixtures of o-cresol + poly(ethylene glycols) in the temperature range 288.15–308.15 K and atmospheric pressure. Phys. Chem. Liq. 56(1), 55–68 (2018). https://doi.org/10.1080/00319104.2017.1292424

    Article  CAS  Google Scholar 

  29. Nain, A.K., Ansari, S., Ali, A.: Densities, refractive indices, ultrasonic speeds and excess properties of acetonitrile + poly(ethylene glycol) binary mixtures at temperatures from 298.15 to 313.15 K. J. Solution Chem. 43(6), 1032–54 (2014). https://doi.org/10.1007/s10953-014-0189-9

    Article  CAS  Google Scholar 

  30. Živković, N.V., Šerbanović, S.S., Kijevčanin, M.L., Živković, E.M.: Volumetric and viscometric behavior of binary systems 2-butanol + PEG 200, + PEG 400, + tetraethylene glycol dimethyl ether, and + N-methyl-2-pyrrolidone. J. Chem. Eng. Data. 58(12), 3332–3341 (2013). https://doi.org/10.1021/je400486p

    Article  CAS  Google Scholar 

  31. Živković, N., Šerbanović, S., Kijevčanin, M., Živković, E.: Volumetric properties, viscosities, and refractive indices of the binary systems 1-butanol + PEG 200, + PEG 400, and + TEGDME. Int. J. Thermophys. 34(6), 1002–1020 (2013). https://doi.org/10.1007/s10765-013-1469-0

    Article  CAS  Google Scholar 

  32. Vuksanović, J.M., Radović, I.R., Šerbanović, S.P., Kijevčanin, M.L.: Experimental investigation of interactions and thermodynamic properties of poly(ethylene glycol) 200/400 + dimethyl adipate/dimethyl phthalate binary mixtures. J. Chem. Eng. Data. 60(6), 1910–1925 (2015). https://doi.org/10.1021/acs.jced.5b00156

    Article  CAS  Google Scholar 

  33. Ali, A., Ansari, S., Nain, A.K.: Densities, refractive indices and excess properties of binary mixtures of dimethylsulphoxide with some poly(ethylene glycol)s at different temperatures. J. Mol. Liq. 178, 178–184 (2013). https://doi.org/10.1016/j.molliq.2012.12.002

    Article  CAS  Google Scholar 

  34. Comelli, F., Ottani, S., Francesconi, R., Castellari, C.: Densities, viscosities, refractive indices, and excess molar enthalpies of binary mixtures containing poly(ethylene glycol) 200 and 400 + dimethoxymethane and + 1,2-dimethoxyethane at 298.15 K. J. Chem. Eng. Data. 47(5), 1226–31 (2002). https://doi.org/10.1021/je0255224

    Article  CAS  Google Scholar 

  35. Živković, E.M., Živković, N.V., Majstorović, D.M., Stanimirović, A.M., Kijevčanin, M.L.: Volumetric and transport properties of binary liquid mixtures with 1-ethyl-3-methylimidazolium ethyl sulfate as candidate solvents for regenerative flue gas desulfurization processes. J. Chem. Thermodyn. 119, 135–154 (2018). https://doi.org/10.1016/j.jct.2017.12.023

    Article  CAS  Google Scholar 

  36. Francesconi, R., Bigi, A., Rubini, K., Comelli, F.: Molar heat capacities, densities, viscosities, and refractive indices of poly(ethylene glycols) + 2-methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data. 52(5), 2020–5 (2007). https://doi.org/10.1021/je7003066

    Article  CAS  Google Scholar 

  37. Yasmin, M., Gupta, M.: Density, viscosity, velocity and refractive index of binary mixtures of poly(ethylene glycol) 200 with ethanolamine, m-cresol and aniline at 298.15 K. J. Solution Chem. 40(8), 1458–72 (2011). https://doi.org/10.1007/s10953-011-9731-1

    Article  CAS  Google Scholar 

  38. Awwad, A.M., Al-Dujaili, A.H., Salman, H.E.: Relative permittivities, densities, and refractive indices of the binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and poly(ethylene glycol) at 303.15 K. J. Chem. Eng. Data. 47(3), 421–4 (2002). https://doi.org/10.1021/je010259c

    Article  CAS  Google Scholar 

  39. Wu, T.-Y., Chen, B.-K., Hao, L., Lin, K.-F., Sun, I.W.: Thermophysical properties of a room temperature ionic liquid (1-methyl-3-pentyl-imidazolium hexafluorophosphate) with poly(ethylene glycol). J. Taiwan Inst. Chem. Engin. 42(6), 914–921 (2011). https://doi.org/10.1016/j.jtice.2011.04.006

    Article  CAS  Google Scholar 

  40. Hemmat, M., Moosavi, M., Dehghan, M., Mousavi, E., Rostami, A.A.: Thermodynamic, transport and optical properties of formamide + 1,2-ethanediol, 1,3-propanediol and poly (ethylene glycol) 200 binary liquid mixtures. J. Mol. Liq. 233, 222–235 (2017). https://doi.org/10.1016/j.molliq.2017.03.008

    Article  CAS  Google Scholar 

  41. Moosavi, M., Omrani, A., Ali Rostami, A., Motahari, A.: Isobaric, isothermal theoretical investigation and examination of different prediction equations on some physicochemical properties in PEG liquid polymer system. J. Chem. Thermodyn. 68, 205–215 (2014). https://doi.org/10.1016/j.jct.2013.09.006

    Article  CAS  Google Scholar 

  42. Wu, T.-Y., Chen, B.-K., Hao, L., Lin, Y.-C., Wang, H.P., Kuo, C.-W., et al.: Physicochemical properties of glycine-based ionic liquid [QuatGly-OEt][EtOSO3] (2-Ethoxy-1-ethyl-1,1-dimethyl-2-oxoethanaminium ethyl sulfate) and its binary mixtures with poly(ethylene glycol) (MW = 200) at various temperatures. Int. J. Mol. Sci. 12, 8750–8772 (2011). https://doi.org/10.3390/ijms12128750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaudhary, N., Nain, A.K.: Densities, speeds of sound, refractive indices, excess and partial molar properties of polyethylene glycol 200 + methyl acrylate or ethyl acrylate or n-butyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 271, 501–13 (2018). https://doi.org/10.1016/j.molliq.2018.09.020

    Article  CAS  Google Scholar 

  44. Sengwa, R.J., Dhatarwal, P., Choudhary, S.: Static permittivities, viscosities, refractive indices and electrical conductivities of the binary mixtures of acetonitrile with poly(ethylene glycol)-200 at temperatures 288.15–318.15 K. J. Mol. Liq. 271, 128–35 (2018). https://doi.org/10.1016/j.molliq.2018.08.137

    Article  CAS  Google Scholar 

  45. Sengwa, R.J., Choudhary, S., Dhatarwal, P.: Dielectric and electrical behaviour over the static permittivity frequency regime, the refractive indices and viscosities of PC-PEG binary mixtures. J. Mol. Liq. 252, 339–350 (2018). https://doi.org/10.1016/j.molliq.2017.12.139

    Article  CAS  Google Scholar 

  46. Yasmin, M., Gupta, M., Shukla, J.P.: Experimental and computational study on viscosity and optical dielectric constant of solutions of poly (ethylene glycol) 200. J. Mol. Liq. 160(1), 22–29 (2011). https://doi.org/10.1016/j.molliq.2011.02.005

    Article  CAS  Google Scholar 

  47. Branco, A.S.H., Calado, M.S., Fareleira, J.M.N.A., Visak, Z.P., Canongia Lopes, J.N.: Refraction index and molar refraction in ionic liquid/PEG200 solutions. J. Solution Chem. 44(3–4), 431–439 (2015). https://doi.org/10.1007/s10953-014-0277-x

    Article  CAS  Google Scholar 

  48. Sengwa, R.J., Sankhla, S., Sharma, S.: Refractometric study of polymers and their blends in solution. Indian J. Chem. Sect. A. 46A(9), 1419–22 (2007)

    CAS  Google Scholar 

  49. Van Geet, A.L.: Calibration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermister probe. Anal. Chem. 40, 2227–2229 (1968)

    Article  Google Scholar 

  50. Jerschow, A., Müller, N.: 3D diffusion-ordered TOCSY for slowly diffusing molecules. J. Magn. Reson. A. 123, 222–225 (1996)

    Article  Google Scholar 

  51. Jerschow, A., Müller, N.: Suppression of convection artifacts in stimulated-echo diffusion experiments: Double-stimulated-echo experiments. J. Magn. Reson. 125, 372–375 (1997)

    Article  CAS  Google Scholar 

  52. Nicolay, K., Braun, K.P.J., de Graaf, R.A., Dijkhuizen, R.M., Kruiskamp, M.J.: Diffusion NMR spectroscopy. NMR Biomed. 14, 94–111 (2001)

    Article  CAS  PubMed  Google Scholar 

  53. Hoffmann, M.M., Bothe, S., Gutmann, T., Buntkowsky, G.: Combining freezing point depression and self-diffusion data for characterizing aggregation. J. Phys. Chem. B. 122(18), 4913–4921 (2018). https://doi.org/10.1021/acs.jpcb.8b03456

    Article  CAS  PubMed  Google Scholar 

  54. Tammann, G., Hesse, W.: Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156(1), 245–257 (1926). https://doi.org/10.1002/zaac.19261560121

    Article  CAS  Google Scholar 

  55. Garland, C.W., Nibler, J.W., Shoemaker, D.P.: Experiments in Physical Chemistry, 8th edn. McGraw-Hill, New York (2009)

    Google Scholar 

  56. Zuccaccia, D., Maccioni, A.: An accurate methodology to identify the level of aggregation in solution by PGSE NMR measurements: The case of half-sandwich diamino ruthenium(II) salts. Organometallics 24(14), 3476–3486 (2005)

    Article  CAS  Google Scholar 

  57. Hayamizu, K., Tsuzuki, S., Seki, S., Fujii, K., Suenaga, M., Umebayashi, Y.: Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J. Chem. Phys. 133(19), 194505 (2010). https://doi.org/10.1063/1.3505307

    Article  CAS  PubMed  Google Scholar 

  58. Macchioni, A., Ciancaleoni, G., Zuccaccia, C., Zuccaccia, D.: Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem. Soc. Rev. 37, 479–489 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. Chen, H.-C., Chen, S.-H.: Diffusion of crown ethers in alcohols. J. Phys. Chem. 88, 5118–5121 (1984)

    Article  CAS  Google Scholar 

  60. Gierer, A., Wirtz, K.: Molecular theory of microfriction. Z. Naturforsch. A. 8, 532–538 (1953)

    Article  Google Scholar 

  61. Van der Bondi, A.: Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  62. Edward, J.T.: Molecular volumes and the Stokes–Einstein equation. J. Chem. Educ. 47, 261–270 (1970)

    Article  CAS  Google Scholar 

  63. Hoffmann, M.M., Too, M.D., Paddock, N.A., Horstmann, R., Kloth, S., Vogel, M., et al.: On the behavior of the ethylene glycol components of polydisperse polyethylene glycol PEG200. J. Phys. Chem. B. 127, 1178–1196 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chang, I., Fujara, F., Geil, B., Heuberger, G., Mangel, T., Sillescu, H.: Translational and rotational molecular motion in supercooled liquids studied by NMR and forced Rayleigh scattering. J. Non-Cryst. Solids. 172–174, 248–255 (1994)

    Article  Google Scholar 

  65. Cicerone, M.T., Ediger, M.D.: Enhanced translation of probe molecules in supercooled o-terphenyl: Signature of spatially heterogeneous dynamics? J. Chem. Phys. 104, 7210–7218 (1996)

    Article  CAS  Google Scholar 

  66. Hoffmann, M.M., Bothe, S., Gutmann, T., Buntkowsky, G.: Unusual local molecular motions in the solid state detected by dynamic nuclear polarization enhanced NMR spectroscopy. J. Phys. Chem. C. 121(41), 22948–22957 (2017). https://doi.org/10.1021/acs.jpcc.7b07965

    Article  CAS  Google Scholar 

  67. Hoffmann, M.M., Too, M.D., Vogel, M., Gutmann, T., Buntkowsky, G.: Breakdown of the Stokes-Einstein equation for solutions of water in oil reverse micelles. J. Phys. Chem. B. 124(41), 9115–9125 (2020). https://doi.org/10.1021/acs.jpcb.0c06124

    Article  CAS  PubMed  Google Scholar 

  68. Turton, D.A., Wynne, K.: Stokes–Einstein–Debye failure in molecular orientational diffusion: exception or rule? J. Phys. Chem. B. 118(17), 4600–4604 (2014). https://doi.org/10.1021/jp5012457

    Article  CAS  PubMed  Google Scholar 

  69. Yamaguchi, T.: Decoupling between solvent viscosity and diffusion of a small solute induced by self-motion. J Phys Chem Lett. 12(32), 7696–7700 (2021). https://doi.org/10.1021/acs.jpclett.1c02219

    Article  CAS  PubMed  Google Scholar 

  70. Kumar, A., Singh, T., Gardas, R.L., Coutinho, Jo.A.P.: Non-ideal behaviour of a room temperature ionic liquid in an alkoxyethanol or poly ethers at T=(298.15 to 318.15)K. J. Chem. Thermodyn. 40(1), 32–9 (2008). https://doi.org/10.1016/j.jct.2007.06.002

    Article  CAS  Google Scholar 

Download references

Funding

This report is based upon work supported by the National Science Foundation under Grant No. [1953428] and the Deutsche Forschungsgemeinschaft (DFG) under grant Bu 911/24-2. The latter included a Mercator fellowship for MMH to support research stays at the Technical University Darmstadt.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and supervision were performed by MH; formal analysis and investigation by NR, NP, MA, MH; writing—original draft preparation—by MH; writing—review and editing—by MH, NR, MA, NP, TG, and GB; funding acquisition by GB, TG, MH; resources by MH, GB.

Corresponding authors

Correspondence to Markus M. Hoffmann or Gerd Buntkowsky.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, M.M., Randall, N.P., Apak, M.H. et al. Solute–Solvent Interactions of 2,2,6,6-Tetramethylpiperidinyloxyl and 5-Tert-Butylisophthalic Acid in Polyethylene Glycol as Observed by Measurements of Density, Viscosity, and Self-Diffusion Coefficient. J Solution Chem 52, 685–707 (2023). https://doi.org/10.1007/s10953-023-01265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01265-4

Keywords

Navigation